Machine Learning for Surgical Phase Recognition: A Systematic Review.

深度学习 梅德林 学习曲线
作者
Carly R. Garrow,Karl-Friedrich Kowalewski,Linhong Li,Martin Wagner,Mona W. Schmidt,Sandy Engelhardt,Daniel A. Hashimoto,Hannes Kenngott,Sebastian Bodenstedt,Stefanie Speidel,Beat P. Müller-Stich,Felix Nickel
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:273 (4): 684-693 被引量:16
标识
DOI:10.1097/sla.0000000000004425
摘要

Objective To provide an overview of ML models and data streams utilized for automated surgical phase recognition. Background Phase recognition identifies different steps and phases of an operation. ML is an evolving technology that allows analysis and interpretation of huge data sets. Automation of phase recognition based on data inputs is essential for optimization of workflow, surgical training, intraoperative assistance, patient safety, and efficiency. Methods A systematic review was performed according to the Cochrane recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PubMed, Web of Science, IEEExplore, GoogleScholar, and CiteSeerX were searched. Literature describing phase recognition based on ML models and the capture of intraoperative signals during general surgery procedures was included. Results A total of 2254 titles/abstracts were screened, and 35 full-texts were included. Most commonly used ML models were Hidden Markov Models and Artificial Neural Networks with a trend towards higher complexity over time. Most frequently used data types were feature learning from surgical videos and manual annotation of instrument use. Laparoscopic cholecystectomy was used most commonly, often achieving accuracy rates over 90%, though there was no consistent standardization of defined phases. Conclusions ML for surgical phase recognition can be performed with high accuracy, depending on the model, data type, and complexity of surgery. Different intraoperative data inputs such as video and instrument type can successfully be used. Most ML models still require significant amounts of manual expert annotations for training. The ML models may drive surgical workflow towards standardization, efficiency, and objectiveness to improve patient outcome in the future. Registration prospero CRD42018108907.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GET发布了新的文献求助10
1秒前
2秒前
4秒前
孤月寒沙影关注了科研通微信公众号
7秒前
jwb711发布了新的文献求助20
7秒前
读研顺利完成签到 ,获得积分10
8秒前
wei完成签到,获得积分10
9秒前
9秒前
yana完成签到,获得积分10
11秒前
我是老大应助三腔二囊管采纳,获得10
12秒前
123完成签到,获得积分10
12秒前
carbon-dots发布了新的文献求助10
13秒前
15秒前
Jolleyhaha完成签到 ,获得积分10
15秒前
qing完成签到 ,获得积分10
17秒前
泡面完成签到 ,获得积分10
19秒前
李健应助王紫绯采纳,获得10
21秒前
小二郎应助渡v采纳,获得10
21秒前
上官若男应助北极星采纳,获得30
21秒前
WSND完成签到,获得积分10
22秒前
22秒前
虞无声发布了新的文献求助50
23秒前
23秒前
mingzhu发布了新的文献求助10
23秒前
英俊的铭应助天南采纳,获得10
24秒前
踏实天空应助carbon-dots采纳,获得10
26秒前
WSND发布了新的文献求助10
26秒前
bvh完成签到,获得积分10
26秒前
123完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
从容乌完成签到 ,获得积分10
29秒前
30秒前
爱学习的小趴菜完成签到,获得积分10
31秒前
不配.应助想人陪的从波采纳,获得10
32秒前
Yvette发布了新的文献求助10
32秒前
gy发布了新的文献求助10
33秒前
华仔应助穿堂风采纳,获得10
33秒前
王紫绯发布了新的文献求助10
33秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139135
求助须知:如何正确求助?哪些是违规求助? 2790050
关于积分的说明 7793436
捐赠科研通 2446426
什么是DOI,文献DOI怎么找? 1301124
科研通“疑难数据库(出版商)”最低求助积分说明 626106
版权声明 601102