Machine Learning for Surgical Phase Recognition

医学 标准化 工作流程 人工智能 机器学习 计算机科学 数据库 操作系统
作者
Carly R. Garrow,Karl‐Friedrich Kowalewski,Linhong Li,Martin Wagner,Mona Wanda Schmidt,Sandy Engelhardt,Daniel A. Hashimoto,Hannes Kenngott,Sebastian Bodenstedt,Stefanie Speidel,Beat P. Müller‐Stich,Felix Nickel
出处
期刊:Annals of Surgery [Ovid Technologies (Wolters Kluwer)]
卷期号:273 (4): 684-693 被引量:248
标识
DOI:10.1097/sla.0000000000004425
摘要

Objective: To provide an overview of ML models and data streams utilized for automated surgical phase recognition. Background: Phase recognition identifies different steps and phases of an operation. ML is an evolving technology that allows analysis and interpretation of huge data sets. Automation of phase recognition based on data inputs is essential for optimization of workflow, surgical training, intraoperative assistance, patient safety, and efficiency. Methods: A systematic review was performed according to the Cochrane recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PubMed, Web of Science, IEEExplore, GoogleScholar, and CiteSeerX were searched. Literature describing phase recognition based on ML models and the capture of intraoperative signals during general surgery procedures was included. Results: A total of 2254 titles/abstracts were screened, and 35 full-texts were included. Most commonly used ML models were Hidden Markov Models and Artificial Neural Networks with a trend towards higher complexity over time. Most frequently used data types were feature learning from surgical videos and manual annotation of instrument use. Laparoscopic cholecystectomy was used most commonly, often achieving accuracy rates over 90%, though there was no consistent standardization of defined phases. Conclusions: ML for surgical phase recognition can be performed with high accuracy, depending on the model, data type, and complexity of surgery. Different intraoperative data inputs such as video and instrument type can successfully be used. Most ML models still require significant amounts of manual expert annotations for training. The ML models may drive surgical workflow towards standardization, efficiency, and objectiveness to improve patient outcome in the future. Registration PROSPERO: CRD42018108907
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不扯先生完成签到,获得积分10
刚刚
1秒前
1秒前
wbb完成签到 ,获得积分10
1秒前
嘻嗷完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
5秒前
Gloria完成签到 ,获得积分10
6秒前
yyy完成签到 ,获得积分10
7秒前
8秒前
碗在水中央完成签到 ,获得积分10
8秒前
争气完成签到 ,获得积分10
10秒前
Xiaoyisheng完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
13秒前
希达通完成签到 ,获得积分10
16秒前
alvis完成签到 ,获得积分10
16秒前
17秒前
哥哥完成签到 ,获得积分10
20秒前
欢呼妙菱完成签到,获得积分10
22秒前
忽晚完成签到 ,获得积分10
22秒前
24秒前
追寻麦片完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
25秒前
Much完成签到 ,获得积分10
26秒前
典雅问寒应助zongzi12138采纳,获得10
26秒前
活泼草莓完成签到 ,获得积分10
27秒前
纪靖雁完成签到 ,获得积分10
27秒前
掠影完成签到,获得积分10
27秒前
Bake完成签到 ,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
许xu发布了新的文献求助10
30秒前
田1986完成签到,获得积分10
30秒前
忐忑的书桃完成签到 ,获得积分10
31秒前
知了完成签到 ,获得积分10
32秒前
caicai完成签到,获得积分10
32秒前
33秒前
ylyao完成签到,获得积分10
35秒前
小钥匙完成签到 ,获得积分10
35秒前
36秒前
wxx完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773428
求助须知:如何正确求助?哪些是违规求助? 5611061
关于积分的说明 15431143
捐赠科研通 4905922
什么是DOI,文献DOI怎么找? 2639929
邀请新用户注册赠送积分活动 1587829
关于科研通互助平台的介绍 1542833