亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning for Surgical Phase Recognition: A Systematic Review.

深度学习 梅德林 学习曲线
作者
Carly R. Garrow,Karl-Friedrich Kowalewski,Linhong Li,Martin Wagner,Mona W. Schmidt,Sandy Engelhardt,Daniel A. Hashimoto,Hannes Kenngott,Sebastian Bodenstedt,Stefanie Speidel,Beat P. Müller-Stich,Felix Nickel
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:273 (4): 684-693 被引量:16
标识
DOI:10.1097/sla.0000000000004425
摘要

Objective To provide an overview of ML models and data streams utilized for automated surgical phase recognition. Background Phase recognition identifies different steps and phases of an operation. ML is an evolving technology that allows analysis and interpretation of huge data sets. Automation of phase recognition based on data inputs is essential for optimization of workflow, surgical training, intraoperative assistance, patient safety, and efficiency. Methods A systematic review was performed according to the Cochrane recommendations and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. PubMed, Web of Science, IEEExplore, GoogleScholar, and CiteSeerX were searched. Literature describing phase recognition based on ML models and the capture of intraoperative signals during general surgery procedures was included. Results A total of 2254 titles/abstracts were screened, and 35 full-texts were included. Most commonly used ML models were Hidden Markov Models and Artificial Neural Networks with a trend towards higher complexity over time. Most frequently used data types were feature learning from surgical videos and manual annotation of instrument use. Laparoscopic cholecystectomy was used most commonly, often achieving accuracy rates over 90%, though there was no consistent standardization of defined phases. Conclusions ML for surgical phase recognition can be performed with high accuracy, depending on the model, data type, and complexity of surgery. Different intraoperative data inputs such as video and instrument type can successfully be used. Most ML models still require significant amounts of manual expert annotations for training. The ML models may drive surgical workflow towards standardization, efficiency, and objectiveness to improve patient outcome in the future. Registration prospero CRD42018108907.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pattis完成签到 ,获得积分10
10秒前
ZR完成签到,获得积分10
31秒前
迷人的天抒应助MIMI采纳,获得10
32秒前
田様应助scl采纳,获得10
35秒前
英姑应助ZR采纳,获得10
1分钟前
1分钟前
杨无敌完成签到 ,获得积分10
1分钟前
1分钟前
Shan发布了新的文献求助10
1分钟前
Oven完成签到,获得积分10
1分钟前
1分钟前
1分钟前
6666完成签到,获得积分10
1分钟前
1分钟前
1分钟前
wao完成签到 ,获得积分10
1分钟前
1分钟前
scl发布了新的文献求助10
1分钟前
TIGun完成签到,获得积分10
1分钟前
ZR发布了新的文献求助10
2分钟前
TongKY完成签到 ,获得积分10
2分钟前
scl完成签到,获得积分10
2分钟前
Lin发布了新的文献求助10
3分钟前
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Akim应助科研通管家采纳,获得20
3分钟前
传奇完成签到 ,获得积分10
3分钟前
所所应助Lin采纳,获得10
3分钟前
Orange应助与枫采纳,获得10
3分钟前
3分钟前
与枫发布了新的文献求助10
3分钟前
4分钟前
4分钟前
爆米花应助FIGGIEKIO采纳,获得80
4分钟前
4分钟前
4分钟前
蓝羽发布了新的文献求助10
4分钟前
CipherSage应助嘿嘿嘿侦探社采纳,获得10
4分钟前
大胆的碧菡完成签到,获得积分10
4分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968433
求助须知:如何正确求助?哪些是违规求助? 3513255
关于积分的说明 11167068
捐赠科研通 3248622
什么是DOI,文献DOI怎么找? 1794280
邀请新用户注册赠送积分活动 874990
科研通“疑难数据库(出版商)”最低求助积分说明 804629