已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Band gap and band alignment prediction of nitride-based semiconductors using machine learning

纤锌矿晶体结构 带隙 半导体 宽禁带半导体 氮化物 空格(标点符号) 计算机科学 人工智能 材料科学 机器学习 光电子学 纳米技术 操作系统 冶金 图层(电子)
作者
Yang Huang,Changyou Yu,Weiguang Chen,Yuhuai Liu,Chong Li,Chunyao Niu,Fei Wang,Yu Jia
出处
期刊:Journal of Materials Chemistry C [The Royal Society of Chemistry]
卷期号:7 (11): 3238-3245 被引量:10
标识
DOI:10.1039/c8tc05554h
摘要

Nitride has been drawing much attention due to its wide range of applications in optoelectronics and remains plenty of room for materials design and discovery. Here, a large set of nitrides have been designed, with their band gap and alignment being studied by first-principles calculations combined with machine learning. Band gap and band offset against wurtzite GaN accurately calculated by the combination of screened hybrid functional of HSE and DFT-PBE were used to train and test machine learning models. After comparison among different techniques of machine learning, when elemental properties are taken as features, support vector regression (SVR) with radial kernel performs best for predicting both band gap and band offset with prediction root mean square error (RMSE) of 0.298 eV and 0.183 eV, respectively. The former is within HSE calculation uncertainty and the latter is small enough to provide reliable predictions. Additionally, when band gap calculated by DFT-PBE was added into the feature space, band gap prediction RMSE decreases to 0.099 eV. Through a feature engineering algorithm, elemental feature space based band gap prediction RMSE further drops by around 0.005 eV and the relative importance of elemental properties for band gap prediction was revealed. Finally, band gap and band offset of all designed nitrides were predicted and two trends were noticed that as the number of cation types increases, band gap tends to narrow down while band offset tends to go up. The predicted results will be a useful guidance for precise investigation on nitride engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
暄anbujun完成签到,获得积分10
刚刚
格子完成签到,获得积分10
2秒前
暄anbujun发布了新的文献求助10
3秒前
FrankW发布了新的文献求助10
5秒前
十二发布了新的文献求助10
7秒前
大个应助暄anbujun采纳,获得10
9秒前
田様应助nater4ver采纳,获得10
10秒前
FrankW完成签到,获得积分10
12秒前
坚强豪英发布了新的文献求助30
16秒前
16秒前
霜序完成签到,获得积分10
19秒前
小二郎应助明钟达采纳,获得10
20秒前
科研通AI2S应助唠叨的凌丝采纳,获得30
20秒前
22秒前
Orange应助喵喵发文章啦采纳,获得10
23秒前
健忘煎蛋完成签到,获得积分10
24秒前
31秒前
Garry完成签到,获得积分10
32秒前
jiangfuuuu发布了新的文献求助10
35秒前
健忘煎蛋发布了新的文献求助10
35秒前
明钟达发布了新的文献求助10
36秒前
36秒前
ruii发布了新的文献求助10
41秒前
传奇3应助弄香采纳,获得10
43秒前
冷酷哈密瓜完成签到,获得积分10
48秒前
儒雅的焦发布了新的文献求助10
49秒前
52秒前
坚强豪英完成签到,获得积分10
54秒前
55秒前
卡恩完成签到 ,获得积分10
56秒前
今天鱼怎么样完成签到 ,获得积分10
58秒前
现实的幻露完成签到 ,获得积分10
59秒前
bionova完成签到,获得积分10
1分钟前
机灵鼠标发布了新的文献求助10
1分钟前
FFF完成签到,获得积分10
1分钟前
allshestar完成签到 ,获得积分10
1分钟前
韩较瘦完成签到,获得积分10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
1分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161905
求助须知:如何正确求助?哪些是违规求助? 2813139
关于积分的说明 7898729
捐赠科研通 2472140
什么是DOI,文献DOI怎么找? 1316366
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129