Band gap and band alignment prediction of nitride-based semiconductors using machine learning

纤锌矿晶体结构 带隙 半导体 宽禁带半导体 氮化物 空格(标点符号) 计算机科学 人工智能 材料科学 机器学习 光电子学 纳米技术 图层(电子) 冶金 操作系统
作者
Yang Huang,Changyou Yu,Weiguang Chen,Yuhuai Liu,Chong Li,Chunyao Niu,Fei Wang,Yu Jia
出处
期刊:Journal of Materials Chemistry C [The Royal Society of Chemistry]
卷期号:7 (11): 3238-3245 被引量:10
标识
DOI:10.1039/c8tc05554h
摘要

Nitride has been drawing much attention due to its wide range of applications in optoelectronics and remains plenty of room for materials design and discovery. Here, a large set of nitrides have been designed, with their band gap and alignment being studied by first-principles calculations combined with machine learning. Band gap and band offset against wurtzite GaN accurately calculated by the combination of screened hybrid functional of HSE and DFT-PBE were used to train and test machine learning models. After comparison among different techniques of machine learning, when elemental properties are taken as features, support vector regression (SVR) with radial kernel performs best for predicting both band gap and band offset with prediction root mean square error (RMSE) of 0.298 eV and 0.183 eV, respectively. The former is within HSE calculation uncertainty and the latter is small enough to provide reliable predictions. Additionally, when band gap calculated by DFT-PBE was added into the feature space, band gap prediction RMSE decreases to 0.099 eV. Through a feature engineering algorithm, elemental feature space based band gap prediction RMSE further drops by around 0.005 eV and the relative importance of elemental properties for band gap prediction was revealed. Finally, band gap and band offset of all designed nitrides were predicted and two trends were noticed that as the number of cation types increases, band gap tends to narrow down while band offset tends to go up. The predicted results will be a useful guidance for precise investigation on nitride engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐便当发布了新的文献求助10
刚刚
yyzhou应助科研通管家采纳,获得10
3秒前
小马甲应助科研通管家采纳,获得200
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
雨姐科研应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得30
4秒前
宅多点应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
yyzhou应助科研通管家采纳,获得10
4秒前
雨姐科研应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
boltos应助chenzhi采纳,获得10
4秒前
yyzhou应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助陈哇塞采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
ilihe应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Xulyun完成签到 ,获得积分10
7秒前
10秒前
Chiuchiu完成签到,获得积分10
13秒前
14秒前
小二郎应助奇趣糖采纳,获得10
14秒前
ZeKaWa应助张zhang采纳,获得10
15秒前
16秒前
16秒前
18秒前
超帅的遥完成签到,获得积分10
21秒前
22秒前
求助人员发布了新的文献求助10
22秒前
陈哇塞发布了新的文献求助10
22秒前
科研小秦完成签到,获得积分10
22秒前
PG完成签到 ,获得积分10
24秒前
赘婿应助真君山山长采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560313
求助须知:如何正确求助?哪些是违规求助? 4645465
关于积分的说明 14675208
捐赠科研通 4586593
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490109
关于科研通互助平台的介绍 1460915