Band gap and band alignment prediction of nitride-based semiconductors using machine learning

纤锌矿晶体结构 带隙 半导体 宽禁带半导体 氮化物 空格(标点符号) 计算机科学 人工智能 材料科学 机器学习 光电子学 纳米技术 图层(电子) 冶金 操作系统
作者
Yang Huang,Changyou Yu,Weiguang Chen,Yuhuai Liu,Chong Li,Chunyao Niu,Fei Wang,Yu Jia
出处
期刊:Journal of Materials Chemistry C [The Royal Society of Chemistry]
卷期号:7 (11): 3238-3245 被引量:10
标识
DOI:10.1039/c8tc05554h
摘要

Nitride has been drawing much attention due to its wide range of applications in optoelectronics and remains plenty of room for materials design and discovery. Here, a large set of nitrides have been designed, with their band gap and alignment being studied by first-principles calculations combined with machine learning. Band gap and band offset against wurtzite GaN accurately calculated by the combination of screened hybrid functional of HSE and DFT-PBE were used to train and test machine learning models. After comparison among different techniques of machine learning, when elemental properties are taken as features, support vector regression (SVR) with radial kernel performs best for predicting both band gap and band offset with prediction root mean square error (RMSE) of 0.298 eV and 0.183 eV, respectively. The former is within HSE calculation uncertainty and the latter is small enough to provide reliable predictions. Additionally, when band gap calculated by DFT-PBE was added into the feature space, band gap prediction RMSE decreases to 0.099 eV. Through a feature engineering algorithm, elemental feature space based band gap prediction RMSE further drops by around 0.005 eV and the relative importance of elemental properties for band gap prediction was revealed. Finally, band gap and band offset of all designed nitrides were predicted and two trends were noticed that as the number of cation types increases, band gap tends to narrow down while band offset tends to go up. The predicted results will be a useful guidance for precise investigation on nitride engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁义博完成签到,获得积分10
刚刚
刚刚
1秒前
Frank发布了新的文献求助10
1秒前
2秒前
2秒前
luo发布了新的文献求助10
2秒前
lllllyyyyy发布了新的文献求助30
3秒前
3秒前
不吃鸡蛋吃炸蛋完成签到,获得积分10
4秒前
4秒前
5秒前
喵喵发布了新的文献求助10
5秒前
6秒前
肾宝完成签到,获得积分10
6秒前
6秒前
6秒前
haohaohao发布了新的文献求助10
7秒前
张慧杰完成签到,获得积分10
7秒前
8秒前
8秒前
CodeCraft应助aassdj采纳,获得10
8秒前
幽默的访冬完成签到,获得积分10
9秒前
玩命的紫南完成签到,获得积分10
9秒前
芒果不忙发布了新的文献求助10
11秒前
11秒前
852应助土豆公主采纳,获得10
12秒前
qingchao发布了新的文献求助10
12秒前
13秒前
13秒前
14秒前
Yh完成签到,获得积分10
14秒前
一颗松完成签到,获得积分10
15秒前
15秒前
花城诚成完成签到,获得积分10
15秒前
香蕉觅云应助lunaxia采纳,获得10
16秒前
香蕉觅云应助Lignin采纳,获得10
18秒前
qingchao完成签到,获得积分10
18秒前
lllllyyyyy完成签到,获得积分10
18秒前
杜智诺应助屿2采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736878
求助须知:如何正确求助?哪些是违规求助? 5369127
关于积分的说明 15334294
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622982
邀请新用户注册赠送积分活动 1571829
关于科研通互助平台的介绍 1528648