Band gap and band alignment prediction of nitride-based semiconductors using machine learning

纤锌矿晶体结构 带隙 半导体 宽禁带半导体 氮化物 空格(标点符号) 计算机科学 人工智能 材料科学 机器学习 光电子学 纳米技术 操作系统 冶金 图层(电子)
作者
Yang Huang,Changyou Yu,Weiguang Chen,Yuhuai Liu,Chong Li,Chunyao Niu,Fei Wang,Yu Jia
出处
期刊:Journal of Materials Chemistry C [Royal Society of Chemistry]
卷期号:7 (11): 3238-3245 被引量:10
标识
DOI:10.1039/c8tc05554h
摘要

Nitride has been drawing much attention due to its wide range of applications in optoelectronics and remains plenty of room for materials design and discovery. Here, a large set of nitrides have been designed, with their band gap and alignment being studied by first-principles calculations combined with machine learning. Band gap and band offset against wurtzite GaN accurately calculated by the combination of screened hybrid functional of HSE and DFT-PBE were used to train and test machine learning models. After comparison among different techniques of machine learning, when elemental properties are taken as features, support vector regression (SVR) with radial kernel performs best for predicting both band gap and band offset with prediction root mean square error (RMSE) of 0.298 eV and 0.183 eV, respectively. The former is within HSE calculation uncertainty and the latter is small enough to provide reliable predictions. Additionally, when band gap calculated by DFT-PBE was added into the feature space, band gap prediction RMSE decreases to 0.099 eV. Through a feature engineering algorithm, elemental feature space based band gap prediction RMSE further drops by around 0.005 eV and the relative importance of elemental properties for band gap prediction was revealed. Finally, band gap and band offset of all designed nitrides were predicted and two trends were noticed that as the number of cation types increases, band gap tends to narrow down while band offset tends to go up. The predicted results will be a useful guidance for precise investigation on nitride engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助景清采纳,获得10
刚刚
source完成签到,获得积分10
刚刚
中和皇极发布了新的文献求助10
2秒前
猪猪hero发布了新的文献求助10
2秒前
wjw完成签到,获得积分10
3秒前
芥川发布了新的文献求助10
5秒前
科研狂人发布了新的文献求助10
5秒前
6秒前
斯文败类应助galaxy采纳,获得10
7秒前
Licyan完成签到,获得积分10
8秒前
8秒前
8秒前
秋颖完成签到,获得积分10
8秒前
L563完成签到,获得积分10
8秒前
共享精神应助无心的土豆采纳,获得10
9秒前
抵澳报了完成签到,获得积分0
10秒前
科研小王发布了新的文献求助10
11秒前
冷静尔芙发布了新的文献求助10
11秒前
科研通AI5应助Ann采纳,获得10
12秒前
lili完成签到 ,获得积分10
12秒前
体贴花卷完成签到,获得积分10
13秒前
景清发布了新的文献求助10
14秒前
flylmy2008完成签到,获得积分10
14秒前
14秒前
14秒前
Maerang完成签到,获得积分10
15秒前
李爱国应助ttkd11采纳,获得10
15秒前
16秒前
16秒前
17秒前
芥川完成签到,获得积分10
18秒前
18秒前
曙光完成签到 ,获得积分10
18秒前
FashionBoy应助bb采纳,获得10
19秒前
19秒前
严惜发布了新的文献求助10
19秒前
Owen应助科研小王采纳,获得10
19秒前
搜集达人应助偷乐采纳,获得10
20秒前
20秒前
王铂然发布了新的文献求助10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992040
求助须知:如何正确求助?哪些是违规求助? 3533077
关于积分的说明 11260941
捐赠科研通 3272444
什么是DOI,文献DOI怎么找? 1805837
邀请新用户注册赠送积分活动 882682
科研通“疑难数据库(出版商)”最低求助积分说明 809425