Comprehensive Privacy Analysis of Deep Learning: Passive and Active White-box Inference Attacks against Centralized and Federated Learning

联合学习 差别隐私
作者
Milad Nasr,Reza Shokri,Amir Houmansadr
标识
DOI:10.1109/sp.2019.00065
摘要

Deep neural networks are susceptible to various inference attacks as they remember information about their training data. We design white-box inference attacks to perform a comprehensive privacy analysis of deep learning models. We measure the privacy leakage through parameters of fully trained models as well as the parameter updates of models during training. We design inference algorithms for both centralized and federated learning, with respect to passive and active inference attackers, and assuming different adversary prior knowledge. We evaluate our novel white-box membership inference attacks against deep learning algorithms to trace their training data records. We show that a straightforward extension of the known black-box attacks to the white-box setting (through analyzing the outputs of activation functions) is ineffective. We therefore design new algorithms tailored to the white-box setting by exploiting the privacy vulnerabilities of the stochastic gradient descent algorithm, which is the algorithm used to train deep neural networks. We investigate the reasons why deep learning models may leak information about their training data. We then show that even well-generalized models are significantly susceptible to white-box membership inference attacks, by analyzing state-of-the-art pre-trained and publicly available models for the CIFAR dataset. We also show how adversarial participants, in the federated learning setting, can successfully run active membership inference attacks against other participants, even when the global model achieves high prediction accuracies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自信疾完成签到,获得积分10
刚刚
解师完成签到,获得积分20
刚刚
刚刚
1秒前
hdx完成签到 ,获得积分10
1秒前
diki完成签到,获得积分10
2秒前
louis完成签到,获得积分10
3秒前
ntrip完成签到,获得积分10
4秒前
zs发布了新的文献求助10
4秒前
南宫清涟完成签到,获得积分10
5秒前
5秒前
5秒前
Dfish完成签到,获得积分10
6秒前
8秒前
still关注了科研通微信公众号
8秒前
luck完成签到 ,获得积分10
8秒前
8秒前
Hello~完成签到,获得积分10
8秒前
包子发布了新的文献求助10
9秒前
俭朴从安完成签到,获得积分10
10秒前
10秒前
77发布了新的文献求助10
12秒前
xxx完成签到 ,获得积分10
12秒前
12秒前
superspace完成签到,获得积分10
13秒前
13秒前
hanliulaixi完成签到,获得积分10
14秒前
wangli完成签到,获得积分10
16秒前
zhutier完成签到,获得积分10
16秒前
甜蜜的阳光完成签到 ,获得积分10
17秒前
小鹿发布了新的文献求助10
18秒前
夜倾心完成签到,获得积分10
18秒前
echo完成签到 ,获得积分10
19秒前
明理涔雨完成签到,获得积分10
19秒前
still发布了新的文献求助10
20秒前
20秒前
冶金人发布了新的文献求助50
20秒前
Yun_Q发布了新的文献求助10
20秒前
优雅逍遥完成签到,获得积分10
21秒前
22秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
The Oxford Handbook of Educational Psychology 600
有EBL数据库的大佬进 Matrix Mathematics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3413514
求助须知:如何正确求助?哪些是违规求助? 3015852
关于积分的说明 8872292
捐赠科研通 2703611
什么是DOI,文献DOI怎么找? 1482370
科研通“疑难数据库(出版商)”最低求助积分说明 685266
邀请新用户注册赠送积分活动 679994