分类器(UML)
卷积神经网络
帕金森病
人工智能
计算机科学
素描
人工神经网络
特征提取
召回
模式识别(心理学)
机器学习
疾病
医学
心理学
算法
病理
认知心理学
作者
Sabyasachi Chakraborty,Satyabrata Aich,Jong-Seong-Sim,Eunyoung Han,Jinse Park,Hee‐Cheol Kim
标识
DOI:10.23919/icact48636.2020.9061497
摘要
Identification of the correct biomarkers with respect to particular health issues and detection of the same is of paramount importance for the development of clinical decision support systems. For the patients suffering from Parkinson's Disease (PD), it has been duly observed that impairment in the handwriting is directly proportional to the severity of the disease. Also, the speed and pressure applied to the pen while sketching or writing something are also much lower in patients suffering from Parkinson's disease. Therefore, correctly identifying such biomarkers accurately and precisely at the onset of the disease will lead to a better clinical diagnosis. Therefore, in this paper, a system design is proposed for analyzing Spiral drawing patterns and wave drawing patterns in patients suffering from Parkinson's disease and healthy subjects. The system developed in the study leverages two different convolutional neural networks (CNN), for analyzing the drawing patters of both spiral and wave sketches respectively. Further, the prediction probabilities are trained on a metal classifier based on ensemble voting to provide a weighted prediction from both the spiral and wave sketch. The complete model was trained on the data of 55 patients and has achieved an overall accuracy of 93.3%, average recall of 94 % , average precision of 93.5% and average f1 score of 93.94%.
科研通智能强力驱动
Strongly Powered by AbleSci AI