Parkinson's Disease Detection from Spiral and Wave Drawings using Convolutional Neural Networks: A Multistage Classifier Approach

分类器(UML) 卷积神经网络 帕金森病 人工智能 计算机科学 素描 人工神经网络 特征提取 召回 模式识别(心理学) 机器学习 疾病 医学 心理学 算法 病理 认知心理学
作者
Sabyasachi Chakraborty,Satyabrata Aich,Jong-Seong-Sim,Eunyoung Han,Jinse Park,Hee‐Cheol Kim
标识
DOI:10.23919/icact48636.2020.9061497
摘要

Identification of the correct biomarkers with respect to particular health issues and detection of the same is of paramount importance for the development of clinical decision support systems. For the patients suffering from Parkinson's Disease (PD), it has been duly observed that impairment in the handwriting is directly proportional to the severity of the disease. Also, the speed and pressure applied to the pen while sketching or writing something are also much lower in patients suffering from Parkinson's disease. Therefore, correctly identifying such biomarkers accurately and precisely at the onset of the disease will lead to a better clinical diagnosis. Therefore, in this paper, a system design is proposed for analyzing Spiral drawing patterns and wave drawing patterns in patients suffering from Parkinson's disease and healthy subjects. The system developed in the study leverages two different convolutional neural networks (CNN), for analyzing the drawing patters of both spiral and wave sketches respectively. Further, the prediction probabilities are trained on a metal classifier based on ensemble voting to provide a weighted prediction from both the spiral and wave sketch. The complete model was trained on the data of 55 patients and has achieved an overall accuracy of 93.3%, average recall of 94 % , average precision of 93.5% and average f1 score of 93.94%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dlll完成签到,获得积分10
刚刚
不做科研发布了新的文献求助10
1秒前
1秒前
Charming完成签到,获得积分10
1秒前
蓑衣客完成签到,获得积分10
1秒前
木棉发布了新的文献求助10
1秒前
2秒前
英姑应助看不懂文献采纳,获得10
2秒前
依文发布了新的文献求助10
2秒前
2秒前
小马完成签到,获得积分10
3秒前
3秒前
花花发布了新的文献求助10
4秒前
tll发布了新的文献求助10
4秒前
pluto应助夏沫采纳,获得10
6秒前
文艺小馒头完成签到,获得积分10
6秒前
华道之发布了新的文献求助10
7秒前
zsl发布了新的文献求助10
7秒前
石寒青完成签到,获得积分20
8秒前
友好锦程发布了新的文献求助10
9秒前
BJ_whc完成签到,获得积分10
9秒前
七月完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
12秒前
12秒前
12秒前
shj完成签到,获得积分20
12秒前
丘比特应助小李采纳,获得10
13秒前
13秒前
研友_Lw7OvL完成签到 ,获得积分10
13秒前
千空发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
Either完成签到,获得积分20
15秒前
16秒前
哈哈哈发布了新的文献求助30
16秒前
Ayu发布了新的文献求助10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950472
求助须知:如何正确求助?哪些是违规求助? 3495913
关于积分的说明 11079657
捐赠科研通 3226328
什么是DOI,文献DOI怎么找? 1783760
邀请新用户注册赠送积分活动 867823
科研通“疑难数据库(出版商)”最低求助积分说明 800942