MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution

异质结 光催化 复合数 催化作用 材料科学 化学工程 价(化学) 制氢 化学 分解水 纳米技术 光电子学 复合材料 有机化学 工程类
作者
Lijun Zhang,Guorong Wang,Xuqiang Hao,Zhiliang Jin,Yanbin Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:395: 125113-125113 被引量:181
标识
DOI:10.1016/j.cej.2020.125113
摘要

In this study, we developed a novel in situ growth scheme to construct the [email protected](Co) core-shell precursor material. The [email protected](Co) core-shell precursor was treated by low-temperature phosphorization to obtain a Cu3[email protected] composite catalyst with a self-supporting structure. Cu3[email protected] composite catalyst not only had a hierarchical structure, but also built a p-n heterojunction at the interface. The unique structure and composition of Cu3[email protected] could promote charge migration and provide large surface area and rich active sites to drive water photolysis. In addition, by controlling the degree of phosphation of [email protected](Co) material and adjusting the ratio of Cu and Co, it was found that the maximum hydrogen-producing activity of the composite photocatalyst reached 469.95 μmol (9399 μmol h−1 g−1), and it had a very excellent cycle stability. The results of photoelectrochemical and fluorescence tests showed that the proper conduction and valence band positions of Cu3P and CoP formed a more effective path way for the thermodynamic charge transfer. The construction of p-n type heterojunction provided a fast electron transfer channel in the [email protected] interface. The formed special structrue and the existence of the bult-in electric filed in the p-n heterojunction made the photogenerated carriers in the composite have more effective separation and lower recombination rate, which significantly enhanced H2 production activity. At the same time, our work will provide a new strategy for the rational design of efficient catalysts of MOFs derivatives and a new direction for the design of transition metal phosphide photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助马dc采纳,获得10
刚刚
QW111完成签到,获得积分10
刚刚
刚刚
zhonglv7应助bobo采纳,获得10
2秒前
zhonglv7应助bobo采纳,获得10
2秒前
zhonglv7应助bobo采纳,获得10
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
无花果应助ww采纳,获得10
5秒前
ZZzz发布了新的文献求助10
5秒前
6秒前
lxs159753发布了新的文献求助10
7秒前
解忧的地坛完成签到,获得积分10
7秒前
幽默盼柳发布了新的文献求助10
7秒前
zhl完成签到,获得积分10
7秒前
7秒前
怡然缘分发布了新的文献求助10
7秒前
weiwei完成签到,获得积分10
8秒前
8秒前
8秒前
隐形曼青应助大吱吱采纳,获得10
8秒前
9秒前
9秒前
研友_LJGoXn完成签到,获得积分10
10秒前
11秒前
所所应助ZZzz采纳,获得10
11秒前
呆萌语梦发布了新的文献求助10
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
qian发布了新的文献求助10
13秒前
144发布了新的文献求助10
13秒前
13秒前
dongdong完成签到 ,获得积分10
14秒前
兴十一完成签到,获得积分10
14秒前
芝士酱完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
乐乐应助今天不加班采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5766583
求助须知:如何正确求助?哪些是违规求助? 5565915
关于积分的说明 15413051
捐赠科研通 4900745
什么是DOI,文献DOI怎么找? 2636655
邀请新用户注册赠送积分活动 1584854
关于科研通互助平台的介绍 1540082