异质结
光催化
复合数
催化作用
材料科学
化学工程
价(化学)
氢
制氢
化学
分解水
纳米技术
光电子学
复合材料
有机化学
工程类
作者
Lijun Zhang,Guorong Wang,Xuqiang Hao,Zhiliang Jin,Yanbin Wang
标识
DOI:10.1016/j.cej.2020.125113
摘要
In this study, we developed a novel in situ growth scheme to construct the [email protected](Co) core-shell precursor material. The [email protected](Co) core-shell precursor was treated by low-temperature phosphorization to obtain a Cu3[email protected] composite catalyst with a self-supporting structure. Cu3[email protected] composite catalyst not only had a hierarchical structure, but also built a p-n heterojunction at the interface. The unique structure and composition of Cu3[email protected] could promote charge migration and provide large surface area and rich active sites to drive water photolysis. In addition, by controlling the degree of phosphation of [email protected](Co) material and adjusting the ratio of Cu and Co, it was found that the maximum hydrogen-producing activity of the composite photocatalyst reached 469.95 μmol (9399 μmol h−1 g−1), and it had a very excellent cycle stability. The results of photoelectrochemical and fluorescence tests showed that the proper conduction and valence band positions of Cu3P and CoP formed a more effective path way for the thermodynamic charge transfer. The construction of p-n type heterojunction provided a fast electron transfer channel in the [email protected] interface. The formed special structrue and the existence of the bult-in electric filed in the p-n heterojunction made the photogenerated carriers in the composite have more effective separation and lower recombination rate, which significantly enhanced H2 production activity. At the same time, our work will provide a new strategy for the rational design of efficient catalysts of MOFs derivatives and a new direction for the design of transition metal phosphide photocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI