MOFs-derived Cu3P@CoP p-n heterojunction for enhanced photocatalytic hydrogen evolution

异质结 光催化 复合数 催化作用 材料科学 化学工程 价(化学) 制氢 化学 分解水 纳米技术 光电子学 复合材料 有机化学 工程类
作者
Lijun Zhang,Guorong Wang,Xuqiang Hao,Zhiliang Jin,Yanbin Wang
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:395: 125113-125113 被引量:163
标识
DOI:10.1016/j.cej.2020.125113
摘要

In this study, we developed a novel in situ growth scheme to construct the [email protected](Co) core-shell precursor material. The [email protected](Co) core-shell precursor was treated by low-temperature phosphorization to obtain a Cu3[email protected] composite catalyst with a self-supporting structure. Cu3[email protected] composite catalyst not only had a hierarchical structure, but also built a p-n heterojunction at the interface. The unique structure and composition of Cu3[email protected] could promote charge migration and provide large surface area and rich active sites to drive water photolysis. In addition, by controlling the degree of phosphation of [email protected](Co) material and adjusting the ratio of Cu and Co, it was found that the maximum hydrogen-producing activity of the composite photocatalyst reached 469.95 μmol (9399 μmol h−1 g−1), and it had a very excellent cycle stability. The results of photoelectrochemical and fluorescence tests showed that the proper conduction and valence band positions of Cu3P and CoP formed a more effective path way for the thermodynamic charge transfer. The construction of p-n type heterojunction provided a fast electron transfer channel in the [email protected] interface. The formed special structrue and the existence of the bult-in electric filed in the p-n heterojunction made the photogenerated carriers in the composite have more effective separation and lower recombination rate, which significantly enhanced H2 production activity. At the same time, our work will provide a new strategy for the rational design of efficient catalysts of MOFs derivatives and a new direction for the design of transition metal phosphide photocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丰富猕猴桃完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
JamesPei应助咿咿呀呀采纳,获得10
1秒前
www完成签到,获得积分10
1秒前
科研通AI2S应助Jenny采纳,获得10
2秒前
limin完成签到,获得积分10
3秒前
3秒前
风格完成签到,获得积分10
4秒前
情怀应助专心搞学术采纳,获得20
5秒前
5秒前
zeke发布了新的文献求助10
5秒前
不爱吃糖发布了新的文献求助10
6秒前
852应助冷傲迎梦采纳,获得10
7秒前
陶醉觅夏发布了新的文献求助200
8秒前
8秒前
exile完成签到,获得积分10
9秒前
朱一龙发布了新的文献求助10
9秒前
mawenting完成签到 ,获得积分10
11秒前
zeke完成签到,获得积分10
12秒前
科研通AI5应助solobang采纳,获得10
13秒前
13秒前
小宇OvO发布了新的文献求助10
14秒前
14秒前
忘羡222完成签到,获得积分10
14秒前
专一发布了新的文献求助10
16秒前
跳跃曼文完成签到,获得积分10
17秒前
干将莫邪完成签到,获得积分10
18秒前
SYLH应助exile采纳,获得10
18秒前
小二郎应助魔幻的从梦采纳,获得10
19秒前
20秒前
雪鸽鸽发布了新的文献求助10
20秒前
21秒前
22秒前
22秒前
23秒前
科研通AI5应助朱一龙采纳,获得30
24秒前
SharonDu完成签到 ,获得积分10
25秒前
ayin完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824