Imaging of intranasal drug delivery to the brain.

医学 正电子发射断层摄影术 背景(考古学) 磁共振成像 药物输送 临床前影像学 神经影像学 鼻腔给药 分子成像 模式 医学物理学 模态(人机交互) 神经科学 体内 放射科 药理学 计算机科学 人工智能 社会学 生物技术 古生物学 有机化学 化学 精神科 生物 社会科学
作者
Michael C. Veronesi,Mosa Alhamami,Shelby B Miedema,Yeonhee Yun,Miguel A. Ruiz-Cardozo,Michael W. Vannier
出处
期刊:PubMed 卷期号:10 (1): 1-31 被引量:63
链接
标识
摘要

Intranasal (IN) delivery is a rapidly developing area for therapies with great potential for the treatment of central nervous system (CNS) diseases. Moreover, in vivo imaging is becoming an important part of therapy assessment, both clinically in humans and translationally in animals. IN drug delivery is an alternative to systemic administration that uses the direct anatomic pathway between the olfactory/trigeminal neuroepithelium of the nasal mucosa and the brain. Several drugs have already been approved for IN application, while others are undergoing development and testing. To better understand which imaging modalities are being used to assess IN delivery of therapeutics, we performed a literature search with the key words "Intranasal delivery" and "Imaging" and summarized these findings in the current review. While this review does not attempt to be fully comprehensive, we intend for the examples provided to allow a well-rounded picture of the imaging tools available to assess IN delivery, with an emphasis on the nose-to-brain delivery route. Examples of in vivo imaging, for both humans and animals, include magnetic resonance imaging (MRI), positron emission tomography (PET), single-photon emission computed tomography (SPECT), gamma scintigraphy and computed tomography (CT). Additionally, some in vivo optical imaging modalities, including bioluminescence and fluorescence, have been used more in experimental testing in animals. In this review, we introduce each imaging modality, how it is being utilized and outline its strengths and weaknesses, specifically in the context of IN delivery of therapeutics to the brain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
只与你完成签到,获得积分10
1秒前
1秒前
2秒前
YJ888发布了新的文献求助10
4秒前
暴躁的问晴完成签到,获得积分10
4秒前
4秒前
婷婷完成签到 ,获得积分10
4秒前
4秒前
5秒前
zhangzhang完成签到,获得积分10
5秒前
大个应助Bellala采纳,获得10
5秒前
青一完成签到,获得积分10
6秒前
7秒前
7秒前
蛋黄派完成签到,获得积分10
7秒前
SciGPT应助DDD采纳,获得10
7秒前
冷静靖荷应助fafafa采纳,获得20
8秒前
8秒前
小柠檬完成签到,获得积分20
8秒前
future发布了新的文献求助10
8秒前
俭朴的安阳完成签到 ,获得积分20
9秒前
谦让丹翠发布了新的文献求助10
10秒前
FashionBoy应助Lyncus采纳,获得10
10秒前
Ava应助556644O采纳,获得10
11秒前
你的背包发布了新的文献求助10
11秒前
11秒前
星辰大海应助zlx采纳,获得10
11秒前
13秒前
13秒前
勤恳的依丝完成签到,获得积分10
14秒前
飞天三叉戟应助原子采纳,获得30
14秒前
15秒前
16秒前
yelis完成签到,获得积分10
16秒前
科研通AI5应助周少采纳,获得10
16秒前
华仔应助ZH的天方夜谭采纳,获得10
16秒前
16秒前
grzzz发布了新的文献求助10
17秒前
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476637
求助须知:如何正确求助?哪些是违规求助? 3068229
关于积分的说明 9107100
捐赠科研通 2759749
什么是DOI,文献DOI怎么找? 1514256
邀请新用户注册赠送积分活动 700121
科研通“疑难数据库(出版商)”最低求助积分说明 699312