Current echocardiography techniques have allowed more precise assessment of cardiac structure and function of the several types of cardiomyopathies. Parameters derived from echocardiographic tissue imaging (ETI)-tissue Doppler, strain, strain rate, and others-are extensively used to provide a framework in the evaluation and management of cardiomyopathies. Generally, myocardial function assessed by ETI is depressed in all types of cardiomyopathies, non-ischemic dilated cardiomyopathy (DCM) in particular. In hypertrophic cardiomyopathy (HCM), ETI is useful to identify subclinical disease in family members of HCM, to differentiate HCM from other conditions causing cardiac hypertrophy and to predict cardiac events. ETI also for HCM allows addressing the mechanism behind left ventricular outflow tract obstruction and its improvement after therapeutic options. ETI provides cardiac amyloidosis with unique and specific findings such as apical sparing. Nevertheless, ETI does not seem to provide as much information amenable to histological findings as recently emerging techniques of cardiac magnetic resonance imaging. This review introduces usefulness of ETI and some other ultrasound techniques for detecting clinical and subclinical characteristics of cardiomyopathies, focusing on DCM, HCM, and cardiac amyloidosis.