已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Improved protein structure prediction using potentials from deep learning

计算机科学 蛋白质结构预测 梯度下降 蛋白质结构 构造(python库) 人工神经网络 人工智能 简单(哲学) 算法 机器学习 蛋白质超家族 功能(生物学) 计算生物学 生物系统 卡斯普 数据挖掘 生物 遗传学 认识论 基因 哲学 程序设计语言 生物化学
作者
Andrew Senior,K Taki,John Jumper,James Kirkpatrick,Laurent Sifre,Tim Green,Chongli Qin,Augustin Žídek,Alexander Nelson,Alex Bridgland,Hugo Penedones,Stig Petersen,Karen Simonyan,Steve Crossan,Pushmeet Kohli,David T. Jones,David Silver,Koray Kavukcuoglu,Demis Hassabis
出处
期刊:Nature [Springer Nature]
卷期号:577 (7792): 706-710 被引量:3284
标识
DOI:10.1038/s41586-019-1923-7
摘要

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7. AlphaFold predicts the distances between pairs of residues, is used to construct potentials of mean force that accurately describe the shape of a protein and can be optimized with gradient descent to predict protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
六月完成签到,获得积分10
5秒前
5秒前
莓烦恼完成签到 ,获得积分10
5秒前
吴川完成签到,获得积分10
6秒前
Jin完成签到,获得积分20
8秒前
小二郎应助XudongHou采纳,获得10
9秒前
尼古拉斯铁柱完成签到 ,获得积分10
10秒前
10秒前
Murphy完成签到 ,获得积分10
12秒前
15秒前
颜卿完成签到 ,获得积分10
16秒前
Enron完成签到,获得积分20
19秒前
习习完成签到 ,获得积分10
20秒前
翻个花生发布了新的文献求助10
22秒前
25秒前
27秒前
ttsong2发布了新的文献求助10
28秒前
Enron发布了新的文献求助10
28秒前
YNHN完成签到 ,获得积分10
32秒前
要减肥的安柏完成签到 ,获得积分10
33秒前
XudongHou发布了新的文献求助10
33秒前
义气莫茗完成签到 ,获得积分10
35秒前
zho应助ttsong2采纳,获得10
35秒前
wsl完成签到 ,获得积分10
36秒前
奔跑石小猛完成签到,获得积分10
36秒前
隐形曼青应助LALA采纳,获得10
39秒前
39秒前
挚智完成签到 ,获得积分10
41秒前
led灯泡完成签到 ,获得积分10
42秒前
123完成签到,获得积分10
42秒前
張医铄完成签到,获得积分10
46秒前
JamesPei应助QVQ采纳,获得10
46秒前
沙漠完成签到,获得积分10
48秒前
所所应助lem1991采纳,获得20
49秒前
标致凝莲完成签到 ,获得积分10
52秒前
善学以致用应助FLMXene采纳,获得10
52秒前
52秒前
李王菲发布了新的文献求助10
53秒前
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595574
求助须知:如何正确求助?哪些是违规求助? 4680866
关于积分的说明 14817740
捐赠科研通 4650709
什么是DOI,文献DOI怎么找? 2535516
邀请新用户注册赠送积分活动 1503472
关于科研通互助平台的介绍 1469726