Improved protein structure prediction using potentials from deep learning

计算机科学 蛋白质结构预测 梯度下降 蛋白质结构 构造(python库) 人工神经网络 人工智能 简单(哲学) 算法 机器学习 蛋白质超家族 功能(生物学) 计算生物学 生物系统 卡斯普 数据挖掘 生物 遗传学 认识论 基因 哲学 程序设计语言 生物化学
作者
Andrew Senior,K Taki,John Jumper,James Kirkpatrick,Laurent Sifre,Tim Green,Chongli Qin,Augustin Žídek,Alexander Nelson,Alex Bridgland,Hugo Penedones,Stig Petersen,Karen Simonyan,Steve Crossan,Pushmeet Kohli,David T. Jones,David Silver,Koray Kavukcuoglu,Demis Hassabis
出处
期刊:Nature [Springer Nature]
卷期号:577 (7792): 706-710 被引量:3284
标识
DOI:10.1038/s41586-019-1923-7
摘要

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7. AlphaFold predicts the distances between pairs of residues, is used to construct potentials of mean force that accurately describe the shape of a protein and can be optimized with gradient descent to predict protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hale完成签到,获得积分0
1秒前
小鲨鱼发布了新的文献求助10
1秒前
SABUBU完成签到,获得积分10
3秒前
打打应助Aurora采纳,获得10
3秒前
3秒前
豆豆小baby发布了新的文献求助10
4秒前
孙不缺完成签到,获得积分10
4秒前
kyx发布了新的文献求助20
5秒前
5秒前
科研通AI6应助Cting采纳,获得10
6秒前
6秒前
6秒前
7秒前
王大力发布了新的文献求助10
8秒前
宁宁要去看文献了完成签到,获得积分10
8秒前
丘比特应助拾柒采纳,获得10
8秒前
8秒前
Awei发布了新的文献求助10
9秒前
小二郎应助wy采纳,获得10
9秒前
李爱国应助YY采纳,获得10
9秒前
星辰大海应助舒服的士萧采纳,获得10
9秒前
ning完成签到 ,获得积分10
9秒前
无花果应助花飞飞凡采纳,获得10
9秒前
久燊完成签到,获得积分20
10秒前
12秒前
tengfei完成签到,获得积分10
12秒前
12秒前
DDDD发布了新的文献求助10
14秒前
陆程文完成签到,获得积分10
14秒前
14秒前
霞俊杰完成签到,获得积分20
15秒前
15秒前
15秒前
15秒前
Awei完成签到,获得积分10
15秒前
天天快乐应助牛贝贝采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836