Improved protein structure prediction using potentials from deep learning

计算机科学 蛋白质结构预测 梯度下降 蛋白质结构 构造(python库) 人工神经网络 人工智能 简单(哲学) 算法 机器学习 蛋白质超家族 功能(生物学) 计算生物学 生物系统 卡斯普 数据挖掘 生物 遗传学 认识论 基因 哲学 程序设计语言 生物化学
作者
Andrew Senior,K Taki,John Jumper,James Kirkpatrick,Laurent Sifre,Tim Green,Chongli Qin,Augustin Žídek,Alexander Nelson,Alex Bridgland,Hugo Penedones,Stig Petersen,Karen Simonyan,Steve Crossan,Pushmeet Kohli,David T. Jones,David Silver,Koray Kavukcuoglu,Demis Hassabis
出处
期刊:Nature [Nature Portfolio]
卷期号:577 (7792): 706-710 被引量:3090
标识
DOI:10.1038/s41586-019-1923-7
摘要

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7. AlphaFold predicts the distances between pairs of residues, is used to construct potentials of mean force that accurately describe the shape of a protein and can be optimized with gradient descent to predict protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
CodeCraft应助Hexagram采纳,获得10
1秒前
1秒前
1秒前
3秒前
贝博发布了新的文献求助10
4秒前
张乐乐完成签到,获得积分10
5秒前
6秒前
合适土豆完成签到,获得积分10
6秒前
6秒前
Apple发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
传奇3应助生化老子采纳,获得10
8秒前
9秒前
水告发布了新的文献求助10
9秒前
10秒前
有魅力夜安完成签到,获得积分10
11秒前
冷艳莛完成签到,获得积分10
15秒前
斯文败类应助陈江河采纳,获得10
15秒前
15秒前
Hexagram发布了新的文献求助10
15秒前
Aprentice完成签到,获得积分10
15秒前
斯文败类应助有魅力夜安采纳,获得10
16秒前
16秒前
17秒前
JamesPei应助LQ采纳,获得10
17秒前
18秒前
贝博完成签到,获得积分10
18秒前
18秒前
hepenglov完成签到 ,获得积分10
19秒前
19秒前
19秒前
独特飞机关注了科研通微信公众号
20秒前
cizzz发布了新的文献求助10
22秒前
跳跃的千亦完成签到 ,获得积分10
22秒前
22秒前
yatou327完成签到,获得积分10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125432
求助须知:如何正确求助?哪些是违规求助? 4329244
关于积分的说明 13490706
捐赠科研通 4164104
什么是DOI,文献DOI怎么找? 2282779
邀请新用户注册赠送积分活动 1283854
关于科研通互助平台的介绍 1223137