Improved protein structure prediction using potentials from deep learning

计算机科学 蛋白质结构预测 梯度下降 蛋白质结构 构造(python库) 人工神经网络 人工智能 简单(哲学) 算法 机器学习 蛋白质超家族 功能(生物学) 计算生物学 生物系统 卡斯普 数据挖掘 生物 遗传学 认识论 基因 哲学 程序设计语言 生物化学
作者
Andrew Senior,K Taki,John Jumper,James Kirkpatrick,Laurent Sifre,Tim Green,Chongli Qin,Augustin Žídek,Alexander Nelson,Alex Bridgland,Hugo Penedones,Stig Petersen,Karen Simonyan,Steve Crossan,Pushmeet Kohli,David T. Jones,David Silver,Koray Kavukcuoglu,Demis Hassabis
出处
期刊:Nature [Springer Nature]
卷期号:577 (7792): 706-710 被引量:3284
标识
DOI:10.1038/s41586-019-1923-7
摘要

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7. AlphaFold predicts the distances between pairs of residues, is used to construct potentials of mean force that accurately describe the shape of a protein and can be optimized with gradient descent to predict protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
刚刚
诗图完成签到,获得积分10
1秒前
zyx关闭了zyx文献求助
1秒前
2秒前
阿飞完成签到,获得积分10
3秒前
风不言喻完成签到,获得积分10
4秒前
小鱼发布了新的文献求助10
4秒前
英勇大门发布了新的文献求助10
5秒前
6秒前
Astro完成签到,获得积分10
6秒前
7秒前
热情的乐荷完成签到,获得积分10
8秒前
迅速冬天完成签到,获得积分10
9秒前
啸西风完成签到,获得积分10
11秒前
ccdw发布了新的文献求助10
12秒前
李健应助英勇大门采纳,获得10
12秒前
13秒前
13秒前
YuZhang完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助大气颜演采纳,获得10
14秒前
坦率尔蝶完成签到 ,获得积分10
15秒前
15秒前
小鱼完成签到,获得积分10
15秒前
4444完成签到,获得积分10
15秒前
戒灵发布了新的文献求助10
16秒前
川木完成签到,获得积分10
16秒前
hajimi发布了新的文献求助10
17秒前
多一点完成签到,获得积分20
18秒前
肥鱼不会飞完成签到,获得积分10
19秒前
香草吧噗发布了新的文献求助10
20秒前
21秒前
TingtingGZ发布了新的文献求助50
21秒前
22秒前
meng发布了新的文献求助10
22秒前
戒灵完成签到,获得积分10
22秒前
今后应助熬夜的桃子采纳,获得10
24秒前
25秒前
甜甜亦巧完成签到,获得积分10
25秒前
25秒前
张飞飞飞飞飞应助吕忠义采纳,获得20
25秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499570
求助须知:如何正确求助?哪些是违规求助? 4596391
关于积分的说明 14454281
捐赠科研通 4529548
什么是DOI,文献DOI怎么找? 2482060
邀请新用户注册赠送积分活动 1466041
关于科研通互助平台的介绍 1438891