Improved protein structure prediction using potentials from deep learning

计算机科学 蛋白质结构预测 梯度下降 蛋白质结构 构造(python库) 人工神经网络 人工智能 简单(哲学) 算法 机器学习 蛋白质超家族 功能(生物学) 计算生物学 生物系统 卡斯普 数据挖掘 生物 遗传学 认识论 基因 哲学 程序设计语言 生物化学
作者
Andrew Senior,K Taki,John Jumper,James Kirkpatrick,Laurent Sifre,Tim Green,Chongli Qin,Augustin Žídek,Alexander Nelson,Alex Bridgland,Hugo Penedones,Stig Petersen,Karen Simonyan,Steve Crossan,Pushmeet Kohli,David T. Jones,David Silver,Koray Kavukcuoglu,Demis Hassabis
出处
期刊:Nature [Springer Nature]
卷期号:577 (7792): 706-710 被引量:3090
标识
DOI:10.1038/s41586-019-1923-7
摘要

Protein structure prediction can be used to determine the three-dimensional shape of a protein from its amino acid sequence1. This problem is of fundamental importance as the structure of a protein largely determines its function2; however, protein structures can be difficult to determine experimentally. Considerable progress has recently been made by leveraging genetic information. It is possible to infer which amino acid residues are in contact by analysing covariation in homologous sequences, which aids in the prediction of protein structures3. Here we show that we can train a neural network to make accurate predictions of the distances between pairs of residues, which convey more information about the structure than contact predictions. Using this information, we construct a potential of mean force4 that can accurately describe the shape of a protein. We find that the resulting potential can be optimized by a simple gradient descent algorithm to generate structures without complex sampling procedures. The resulting system, named AlphaFold, achieves high accuracy, even for sequences with fewer homologous sequences. In the recent Critical Assessment of Protein Structure Prediction5 (CASP13)—a blind assessment of the state of the field—AlphaFold created high-accuracy structures (with template modelling (TM) scores6 of 0.7 or higher) for 24 out of 43 free modelling domains, whereas the next best method, which used sampling and contact information, achieved such accuracy for only 14 out of 43 domains. AlphaFold represents a considerable advance in protein-structure prediction. We expect this increased accuracy to enable insights into the function and malfunction of proteins, especially in cases for which no structures for homologous proteins have been experimentally determined7. AlphaFold predicts the distances between pairs of residues, is used to construct potentials of mean force that accurately describe the shape of a protein and can be optimized with gradient descent to predict protein structures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
心空完成签到,获得积分10
3秒前
3秒前
3秒前
虫二完成签到 ,获得积分10
3秒前
4秒前
太渊发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
虫二关注了科研通微信公众号
7秒前
勤奋花瓣发布了新的文献求助10
7秒前
科研通AI6应助11111采纳,获得10
7秒前
飘逸颜完成签到,获得积分10
8秒前
8秒前
wzx发布了新的文献求助10
8秒前
Sunflower发布了新的文献求助10
9秒前
9秒前
星期八完成签到,获得积分10
9秒前
无量发布了新的文献求助10
10秒前
10秒前
烤鱼的夹克完成签到 ,获得积分10
10秒前
10秒前
10秒前
chenqiumu应助水若琳采纳,获得30
11秒前
wr发布了新的文献求助10
11秒前
王世俊完成签到,获得积分10
12秒前
大模型应助慕笙采纳,获得10
12秒前
何禾发布了新的文献求助10
12秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
zoey完成签到 ,获得积分10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
科研通AI2S应助高兴的海亦采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337