已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Corrosion Identification of Fittings Based on Computer Vision

人工智能 计算机科学 Rust(编程语言) 特征提取 计算机视觉 像素 卷积神经网络 RGB颜色模型 特征(语言学) 模式识别(心理学) 哲学 语言学 程序设计语言
作者
Zhiren Tian,Guifeng Zhang,Yongli Liao,Ruihai Li,Fanqi Huang
标识
DOI:10.1109/aiam48774.2019.00123
摘要

The metal rust environment is complex, and the rust parts and shapes are quite different, making rust difficult to detect. As drones are gradually applied to line inspections, computer vision can be used for the identification of metal corrosion. Aiming at the problems existing in the current corrosion detection, this paper proposes a corrosion detection algorithm based on Faster-RCNN target detection model and the rust HSI color feature, which is used to solve the problem of poor applicability and inefficiency of digital image processing and features cannot be accurately extracted when using deep learning method and other issues. First, the rust image is converted from the RGB color model to the HSI color model, and then each pixel of the HSI space is traversed. According to the threshold range of the rusted color feature, it is determined whether the pixel is rusted, thereby removing the complex interference background in the image, leaving only the rusted area used to facilitate the labeling. Then, manually labeling into a training set through the LabelImg open source annotation tool. The labeled data set facilitates feature extraction by convolutional neural networks because only rusted areas are present. Corrosion detection and localization were performed on the prepared training set using the Faster-RCNN target detection model. The results show that it has a good recognition effect for several common rust conditions. Moreover, the method of combining the deep learning algorithm with the HSI color feature achieves a high level in determining the correctness and recall rate of rust, and the leak recognition rate also meets the practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卢靖康应助科研通管家采纳,获得10
刚刚
firmalter应助科研通管家采纳,获得10
刚刚
bkagyin应助科研通管家采纳,获得10
刚刚
joyemovie发布了新的文献求助10
刚刚
llwwtt发布了新的文献求助10
1秒前
FashionBoy应助zy采纳,获得10
1秒前
刘海清应助xiao采纳,获得10
2秒前
美好的落雁完成签到 ,获得积分10
2秒前
曾会锋完成签到,获得积分10
2秒前
3秒前
3秒前
4秒前
甜甜纸飞机完成签到 ,获得积分10
4秒前
安静的招牌完成签到,获得积分20
6秒前
舟舟完成签到 ,获得积分10
7秒前
yjx完成签到,获得积分20
9秒前
10秒前
江梦松完成签到,获得积分10
11秒前
11秒前
甜甜的紫菜完成签到 ,获得积分10
12秒前
CodeCraft应助曾会锋采纳,获得10
12秒前
14秒前
香蕉觅云应助啦啦啦就好采纳,获得10
15秒前
桐桐应助安静的招牌采纳,获得10
15秒前
zy发布了新的文献求助10
18秒前
张琳琳完成签到 ,获得积分10
21秒前
醉熏的荣轩完成签到 ,获得积分10
22秒前
llwwtt完成签到,获得积分10
23秒前
27发布了新的文献求助30
24秒前
Lsmile完成签到 ,获得积分10
25秒前
大模型应助hauru采纳,获得10
25秒前
领导范儿应助dengy采纳,获得10
25秒前
An2ni0完成签到,获得积分10
30秒前
32秒前
江城一霸完成签到,获得积分10
34秒前
原子超人完成签到,获得积分10
37秒前
keke完成签到,获得积分10
39秒前
Lucas应助Ray采纳,获得10
39秒前
42秒前
bbhk完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5356315
求助须知:如何正确求助?哪些是违规求助? 4488125
关于积分的说明 13971650
捐赠科研通 4388976
什么是DOI,文献DOI怎么找? 2411319
邀请新用户注册赠送积分活动 1403874
关于科研通互助平台的介绍 1377700