清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Corrosion Identification of Fittings Based on Computer Vision

人工智能 计算机科学 Rust(编程语言) 特征提取 计算机视觉 像素 卷积神经网络 RGB颜色模型 特征(语言学) 模式识别(心理学) 哲学 语言学 程序设计语言
作者
Zhiren Tian,Guifeng Zhang,Yongli Liao,Ruihai Li,Fanqi Huang
标识
DOI:10.1109/aiam48774.2019.00123
摘要

The metal rust environment is complex, and the rust parts and shapes are quite different, making rust difficult to detect. As drones are gradually applied to line inspections, computer vision can be used for the identification of metal corrosion. Aiming at the problems existing in the current corrosion detection, this paper proposes a corrosion detection algorithm based on Faster-RCNN target detection model and the rust HSI color feature, which is used to solve the problem of poor applicability and inefficiency of digital image processing and features cannot be accurately extracted when using deep learning method and other issues. First, the rust image is converted from the RGB color model to the HSI color model, and then each pixel of the HSI space is traversed. According to the threshold range of the rusted color feature, it is determined whether the pixel is rusted, thereby removing the complex interference background in the image, leaving only the rusted area used to facilitate the labeling. Then, manually labeling into a training set through the LabelImg open source annotation tool. The labeled data set facilitates feature extraction by convolutional neural networks because only rusted areas are present. Corrosion detection and localization were performed on the prepared training set using the Faster-RCNN target detection model. The results show that it has a good recognition effect for several common rust conditions. Moreover, the method of combining the deep learning algorithm with the HSI color feature achieves a high level in determining the correctness and recall rate of rust, and the leak recognition rate also meets the practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
Rayoo发布了新的文献求助10
17秒前
紫金之巅完成签到 ,获得积分10
19秒前
dd完成签到 ,获得积分10
25秒前
风清扬应助科研通管家采纳,获得10
25秒前
玩命的无春完成签到 ,获得积分10
29秒前
风华正茂发布了新的文献求助10
33秒前
QCB完成签到 ,获得积分10
33秒前
bo完成签到 ,获得积分10
51秒前
情怀应助pngyyyy采纳,获得10
1分钟前
如意的馒头完成签到 ,获得积分10
1分钟前
Akim应助小婷君采纳,获得30
1分钟前
阿明完成签到,获得积分10
1分钟前
1分钟前
chcmy完成签到 ,获得积分0
1分钟前
小婷君发布了新的文献求助30
1分钟前
badgerwithfisher完成签到,获得积分10
1分钟前
大个应助小婷君采纳,获得10
2分钟前
ailemonmint完成签到 ,获得积分10
2分钟前
吕嫣娆完成签到 ,获得积分10
2分钟前
Artin完成签到,获得积分10
2分钟前
ys1008完成签到,获得积分10
2分钟前
文献蚂蚁完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分10
2分钟前
洋芋饭饭完成签到,获得积分10
2分钟前
美满惜寒完成签到,获得积分10
2分钟前
朝夕之晖完成签到,获得积分10
2分钟前
xiaowuge完成签到 ,获得积分10
2分钟前
2分钟前
小婷君发布了新的文献求助10
2分钟前
guoguo完成签到,获得积分10
2分钟前
李爱国应助小婷君采纳,获得10
2分钟前
科研通AI2S应助Rayoo采纳,获得10
2分钟前
3分钟前
3分钟前
pngyyyy发布了新的文献求助10
3分钟前
王翎力完成签到,获得积分10
3分钟前
毛毛完成签到,获得积分10
3分钟前
相南相北完成签到 ,获得积分10
3分钟前
jiayoujijin完成签到 ,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495278
关于积分的说明 11076026
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839