Corrosion Identification of Fittings Based on Computer Vision

人工智能 计算机科学 Rust(编程语言) 特征提取 计算机视觉 像素 卷积神经网络 RGB颜色模型 特征(语言学) 模式识别(心理学) 语言学 哲学 程序设计语言
作者
Zhiren Tian,Guifeng Zhang,Yongli Liao,Ruihai Li,Fanqi Huang
标识
DOI:10.1109/aiam48774.2019.00123
摘要

The metal rust environment is complex, and the rust parts and shapes are quite different, making rust difficult to detect. As drones are gradually applied to line inspections, computer vision can be used for the identification of metal corrosion. Aiming at the problems existing in the current corrosion detection, this paper proposes a corrosion detection algorithm based on Faster-RCNN target detection model and the rust HSI color feature, which is used to solve the problem of poor applicability and inefficiency of digital image processing and features cannot be accurately extracted when using deep learning method and other issues. First, the rust image is converted from the RGB color model to the HSI color model, and then each pixel of the HSI space is traversed. According to the threshold range of the rusted color feature, it is determined whether the pixel is rusted, thereby removing the complex interference background in the image, leaving only the rusted area used to facilitate the labeling. Then, manually labeling into a training set through the LabelImg open source annotation tool. The labeled data set facilitates feature extraction by convolutional neural networks because only rusted areas are present. Corrosion detection and localization were performed on the prepared training set using the Faster-RCNN target detection model. The results show that it has a good recognition effect for several common rust conditions. Moreover, the method of combining the deep learning algorithm with the HSI color feature achieves a high level in determining the correctness and recall rate of rust, and the leak recognition rate also meets the practical requirements.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lianqing完成签到,获得积分10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
2秒前
RC_Wang应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
hh应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得30
2秒前
2秒前
Leif应助科研通管家采纳,获得20
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
忘羡222发布了新的文献求助20
5秒前
丰富猕猴桃完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
JamesPei应助咿咿呀呀采纳,获得10
6秒前
www完成签到,获得积分10
6秒前
科研通AI2S应助Jenny采纳,获得10
7秒前
limin完成签到,获得积分10
8秒前
8秒前
风格完成签到,获得积分10
9秒前
情怀应助专心搞学术采纳,获得20
10秒前
10秒前
zeke发布了新的文献求助10
10秒前
不爱吃糖发布了新的文献求助10
11秒前
852应助冷傲迎梦采纳,获得10
12秒前
陶醉觅夏发布了新的文献求助200
13秒前
13秒前
exile完成签到,获得积分10
14秒前
朱一龙发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824