Learning Behavior Analysis and Dropout Rate Prediction Based on MOOCs Data

辍学(神经网络) 计算机科学 人工智能 过程(计算) 机器学习 人工神经网络 区间(图论) 困境 循环神经网络 期限(时间) 时间序列 时间序列 控制(管理) 在线学习 深度学习 多媒体 数学 物理 组合数学 操作系统 量子力学 几何学
作者
Lutong Wang,Hong Wang
出处
期刊:International Conference on Information Technology in Medicine and Education 卷期号:: 419-423 被引量:26
标识
DOI:10.1109/itme.2019.00100
摘要

With the continuous development of the MOOC, a large number of learners have joined the online classroom. Distance education has the advantage of being free from time and geographical restrictions. However, it still faces the dilemma of high dropout rate and the continuous loss of learners. By studying the MOOC log data, we model the various behaviors of students and hope to make more accurate predictions of dropout rates. The student's learning sequence information is essentially time-series data, and the time interval between events is often different, which leads to difficulties in prediction. Therefore, we propose a time-controlled Long Short-Term Memory neural network (E-LSTM) prediction model that incorporates time-control units, the unit has the ability to model early learning behaviors with different time intervals. Based on the original LSTM model, we design time-controlled gates to better capture long-and short-term information and simulate learning process information to improve forecast performance. The experimental results on the real MOOC dataset show that the accuracy of the proposed model is higher than that of multiple comparison models, which proves the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
318yyl完成签到,获得积分10
刚刚
1秒前
洁净艳一完成签到,获得积分10
3秒前
3秒前
CodeCraft应助pu采纳,获得10
3秒前
Orange应助陈最采纳,获得10
4秒前
SciGPT应助猪猪hero采纳,获得10
4秒前
陈泽宇完成签到,获得积分10
5秒前
xinyuY发布了新的文献求助20
5秒前
5秒前
不散的和弦完成签到,获得积分10
6秒前
Dr.zhou完成签到,获得积分10
7秒前
7秒前
8秒前
10秒前
10秒前
11秒前
科目三应助DOC_LIU采纳,获得10
11秒前
FashionBoy应助江屿采纳,获得10
12秒前
超级盼烟发布了新的文献求助10
13秒前
13秒前
九日科研ing完成签到,获得积分0
14秒前
14秒前
令和完成签到 ,获得积分10
14秒前
猪猪hero发布了新的文献求助10
14秒前
14秒前
Sansan.完成签到,获得积分10
15秒前
15秒前
悄悄发布了新的文献求助10
17秒前
桃子味的枫蜜完成签到,获得积分10
18秒前
19秒前
lhlhl发布了新的文献求助10
19秒前
SYLH应助果实采纳,获得10
20秒前
wanci应助顺利凌文采纳,获得10
20秒前
yuhang zhu发布了新的文献求助10
20秒前
彭于晏应助开放小鸭子采纳,获得10
22秒前
24秒前
悄悄完成签到,获得积分20
25秒前
zmnzmnzmn发布了新的文献求助10
26秒前
26秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961189
求助须知:如何正确求助?哪些是违规求助? 3507456
关于积分的说明 11136282
捐赠科研通 3239926
什么是DOI,文献DOI怎么找? 1790545
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803152