In Silico Ecotoxicological Modeling of Pesticide Metabolites and Mixtures

生物信息学 有机体 生化工程 转化(遗传学) 数量结构-活动关系 环境毒理学 污染物 环境化学 生物转化 杀虫剂 环境风险评价 过程(计算) 计算生物学 化学 计算机科学 风险评估 毒性 生物 生物信息学 生态学 生物化学 工程类 古生物学 计算机安全 有机化学 基因 操作系统
作者
Chia‐Ming Chang,Chiung-Wen Chang,WU Fang-wei,Len Chang,Tien-Cheng Liu
出处
期刊:Methods in pharmacology and toxicology 卷期号:: 561-589 被引量:3
标识
DOI:10.1007/978-1-0716-0150-1_23
摘要

Prior to registration, careful assessment of transformation products (TPs) that are more toxic than their parent compounds is required, and EU regulations require greater use of non-animal test methods and risk assessment strategies. Predicting the toxicity of transformation products and chemical mixtures is a major challenge for modern toxicology. Since the metabolic processes of transformation products and toxic effects of chemical mixtures involve complex mechanisms, it is essential to use in silico modeling methods to consider different chemico-biological interactions of metabolic transformation and mixture toxicity. This chapter reviews previous modeling methods used to study pesticide metabolites and mixtures. Although various metabolites are emitted into the environment, there are few ways to interpret metabolites by predicting their ecotoxicological potential, so their formation and environmental fate are largely unknown. In vitro testing has limited coverage of metabolic processes present throughout the organism and may not always predict in vivo results. For systematically assessing the metabolic activation of persistent organic pollutants, researchers designed a comprehensive metabolic simulator to generate the metabolic profile of the POPs. In order to analyze and evaluate parent compounds and transformation products in the environment, data generation based on quantitative structure-activity relationship (QSAR) is becoming more and more important. Besides these, a process-based multimedia multi-species model allows us to quantitatively estimate the environmental exposure and fate of parent compounds and transformation products. Pollutants in the environment usually appear in a joint form, and the biological effects of the mixture are different from the single separated components, so the risk assessment criteria for a single compound cannot accurately infer the actual complex environmental assessment. The interaction between the components of the mixture promotes significant changes in compositional characteristics and complications leading to synergistic or antagonistic effects. The covalent bonding, ionic bonding, van der Waals force, and hydrophilicity are important intermolecular forces that affect the interaction of chemical mixtures and are associated with four types of descriptors. This relationship has been able to study the reaction mechanisms of various environmental characteristics of organic pollutants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助大力的图图采纳,获得10
1秒前
饺子完成签到,获得积分10
1秒前
1秒前
九月初五完成签到,获得积分10
1秒前
数星星发布了新的文献求助10
2秒前
明亮荔枝应助哦吼采纳,获得10
2秒前
pluto应助fafafa采纳,获得10
3秒前
3秒前
曾经的臻发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
苏东方完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
斐波拉切土豆完成签到 ,获得积分10
7秒前
lemishui完成签到,获得积分10
8秒前
火禾心羽发布了新的文献求助10
10秒前
深情安青应助哦吼采纳,获得10
10秒前
all661发布了新的文献求助10
12秒前
cadet发布了新的文献求助10
12秒前
13秒前
14秒前
17秒前
18秒前
研友_85rJEL发布了新的文献求助10
19秒前
祎祎完成签到,获得积分10
20秒前
科研通AI6.1应助顺顺过过采纳,获得10
20秒前
jackie able发布了新的文献求助10
21秒前
现代书雪发布了新的文献求助10
21秒前
温婉发布了新的文献求助10
21秒前
小y完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
伶俐妙海发布了新的文献求助100
24秒前
直率雨柏完成签到,获得积分10
25秒前
COIN_77完成签到 ,获得积分10
27秒前
yan完成签到,获得积分10
30秒前
xupeng完成签到,获得积分10
30秒前
不敢自称科研人完成签到,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838