Predicting Protein Phosphorylation Sites Based on Deep Learning

计算机科学 UniProt公司 卷积神经网络 人工智能 丝氨酸 深度学习 苏氨酸 循环神经网络 蛋白质磷酸化 模式识别(心理学) 磷酸化 机器学习 计算生物学 人工神经网络 生物 生物化学 基因 蛋白激酶A
作者
Haixia Long,Zhao Sun,Manzhi Li,Hai Fu,Ming Lin
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:15 (4): 300-308 被引量:28
标识
DOI:10.2174/1574893614666190902154332
摘要

Background: Protein phosphorylation is one of the most important Post-translational Modifications (PTMs) occurring at amino acid residues serine (S), threonine (T), and tyrosine (Y). It plays critical roles in protein structure and function predicting. With the development of novel high-throughput sequencing technologies, there are a huge amount of protein sequences being generated and stored in databases. Objective: It is of great importance in both basic research and drug development to quickly and accurately predict which residues of S, T, or Y can be phosphorylated. Methods: In order to solve the problem, a novel hybrid deep learning model with a convolutional neural network and bi-directional long short-term memory recurrent neural network (CNN+BLSTM) is proposed for predicting phosphorylation sites in proteins. The model contains a list of layers that transform the input data into an output class, in which the convolution layer captures higher-level abstraction features of amino acid, while the recurrent layer captures long-term dependencies between amino acids to improve predictions. The joint model learns interactions between higher-level features derived from the protein sequence to predict the phosphorylated sites. Results: We applied our model together with two canonical methods namely iPhos-PseEn and MusiteDeep. A 5-fold cross-validation process indicated that CNN+BLSTM outperforms the two competitors in various evaluation metrics like the area under the receiver operating characteristic and precision-recall curves, the Matthews correlation coefficient, F-measure, accuracy, and so on. Conclusion: CNN+BLSTM is promising in identifying potential protein phosphorylation for further experimental validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
BillowHu完成签到,获得积分10
1秒前
脑洞疼应助油菜的星星采纳,获得10
2秒前
琴_Q123完成签到,获得积分10
2秒前
joy发布了新的文献求助10
3秒前
崔帅完成签到,获得积分10
3秒前
华仔应助QI采纳,获得10
3秒前
jaly1111发布了新的文献求助10
4秒前
华仔应助非也非也6采纳,获得10
5秒前
老迟到的念文完成签到,获得积分10
5秒前
科研通AI2S应助dj采纳,获得10
5秒前
6秒前
7秒前
lnnnnn完成签到,获得积分20
7秒前
aaa发布了新的文献求助10
7秒前
LTZ完成签到,获得积分10
8秒前
coffeecoffee发布了新的文献求助10
8秒前
9秒前
开心语蝶完成签到,获得积分10
9秒前
9秒前
领导范儿应助崔帅采纳,获得10
9秒前
段采萱发布了新的文献求助10
10秒前
11秒前
12秒前
夜猫子完成签到,获得积分10
12秒前
12秒前
13秒前
14秒前
honda发布了新的文献求助10
15秒前
15秒前
sw发布了新的文献求助10
17秒前
17秒前
萧水白应助Charlie采纳,获得10
18秒前
dj完成签到,获得积分10
18秒前
hhhhhhh完成签到,获得积分10
20秒前
搞怪的怀蕊完成签到,获得积分10
21秒前
qin希望应助阿T采纳,获得10
21秒前
薄荷糖发布了新的文献求助10
22秒前
23秒前
23秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
美国体育史 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3259657
求助须知:如何正确求助?哪些是违规求助? 2901203
关于积分的说明 8314378
捐赠科研通 2570696
什么是DOI,文献DOI怎么找? 1396601
科研通“疑难数据库(出版商)”最低求助积分说明 653554
邀请新用户注册赠送积分活动 631727