Multiscale Features Supported DeepLabV3+ Optimization Scheme for Accurate Water Semantic Segmentation

计算机科学 人工智能 条件随机场 模式识别(心理学) 特征提取 分割 图像分割 特征(语言学) 计算机视觉 语言学 哲学
作者
Ziyao Li,Rui Wang,Wen Zhang,Fengmin Hu,Lingkui Meng
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:7: 155787-155804 被引量:46
标识
DOI:10.1109/access.2019.2949635
摘要

In the task of using deep learning semantic segmentation model to extract water from high-resolution remote sensing images, multiscale feature sensing and extraction have become critical factors that affect the accuracy of image classification tasks. A single-scale training mode will cause one-sided extraction results, which can lead to “reverse” errors and imprecise detail expression. Therefore, fusing multiscale features for pixel-level classification is the key to achieving accurate image segmentation. Based on this concept, this paper proposes a deep learning scheme to achieve fine extraction of image water bodies. The process includes multiscale feature perception splitting of images, a restructured deep learning network model, multiscale joint prediction, and postprocessing optimization performed by a fully connected conditional random field (CRF). According to the scale space concept of remote sensing, we apply hierarchical multiscale splitting processing to images. Then, we improve the structure of the image semantic segmentation model DeepLabV3+, an advanced image semantic segmentation model, and adjust the feature output layer of the model to multiscale features after weighted fusion. At the back end of the deep learning model, the water boundary details are optimized with the fully connected CRF. The proposed multiscale training method is well adapted to feature extraction for the different scale images in the model. In the multiscale output fusion, assigning different weights to the output features of each scale controls the influence of the various scale features on the water extraction results. We carried out a large number of water extraction experiments on GF1 remote sensing images. The results show that the method significantly improves the accuracy of water extraction and demonstrates the effectiveness of the method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jin完成签到,获得积分10
1秒前
TRY发布了新的文献求助10
1秒前
HJ完成签到,获得积分10
2秒前
2秒前
忘久发布了新的文献求助10
2秒前
元谷雪发布了新的文献求助10
2秒前
3秒前
4秒前
樱桃猴子发布了新的文献求助10
4秒前
4秒前
维洛尼亚完成签到,获得积分10
4秒前
lzz发布了新的文献求助10
5秒前
xss发布了新的文献求助10
5秒前
上官若男应助Zzzz采纳,获得10
5秒前
5秒前
5秒前
pumpkin发布了新的文献求助10
6秒前
Soldier完成签到,获得积分10
6秒前
jbh发布了新的文献求助10
6秒前
hhh完成签到,获得积分10
6秒前
xyq发布了新的文献求助10
6秒前
斯文败类应助笨笨松采纳,获得10
7秒前
7秒前
日月星完成签到,获得积分10
7秒前
靓丽月饼完成签到,获得积分10
8秒前
Jaying完成签到,获得积分10
8秒前
8秒前
脑洞疼应助roy_chiang采纳,获得10
8秒前
00完成签到 ,获得积分10
10秒前
10秒前
zho应助你的女孩TT采纳,获得10
10秒前
kunkun发布了新的文献求助10
10秒前
声醉发布了新的文献求助10
10秒前
HJ发布了新的文献求助10
10秒前
苗秋实完成签到,获得积分10
12秒前
XIXI发布了新的文献求助10
12秒前
元谷雪完成签到,获得积分10
13秒前
颜靖仇发布了新的文献求助10
13秒前
13秒前
wanci应助细心的梦芝采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246