Polyhedral Oligomeric Silsesquioxanes (POSS)‐based Hybrid Materials: Molecular Design, Solution Self‐Assembly and Biomedical Applications

纳米技术 混合材料 分子工程 纳米材料 自组装 聚合 纳米结构 两亲性 合理设计 材料科学 化学 聚合物 共聚物 有机化学
作者
Linfeng Fan,Xing Wang,Decheng Wu
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:39 (3): 757-774 被引量:38
标识
DOI:10.1002/cjoc.202000536
摘要

Abstract Owing to the tremendous advantages and unique well‐defined nanoscale structure, polyhedral oligomeric silsesquioxanes (POSS) have received considerable interest in the design of novel organic‐inorganic hybrid nanomaterials with all manner of prominent capabilities, which is recognized as a new generation of promising materials for advanced applications of material science, engineering science and biomedical fields. Benefitting from the recent progress in combination of controlled/living polymerization and emerging click chemistry, POSS‐based hybrid materials with ingenious design, versatile topological structure and sophisticated multifunctionality have been successfully fabricated and developed into abundant well‐defined hybrid nanostructures with desired physicochemical properties. Tailor‐made amphiphilic molecular design and nanosized hybrid architecture provide opportunities for the self‐assembly of POSS‐based hybrid materials with unique hierarchical morphologies in selective solvents. Through the in‐depth understanding of structure‐properties relationship, POSS‐based hybrid materials can achieve the modulation of precise control of self‐assembling process and multi‐purpose applications with improved material performances. In this review, we summarize the recent advances of POSS‐based hybrid materials in molecular design, self‐assembly behavior in solutions and potential biomedical applications with main concerns on drug delivery, gene therapy, bioimaging and tissue engineering field. Finally, future directions and remaining challenges for further advancement of POSS‐based hybrid materials are proposed and discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助ldy采纳,获得10
刚刚
yaoyao发布了新的文献求助10
刚刚
exp发布了新的文献求助50
刚刚
刚刚
蓼花完成签到,获得积分10
刚刚
小黄完成签到,获得积分10
1秒前
2秒前
asdfqwer应助大吴克采纳,获得10
2秒前
2秒前
dachengzi完成签到 ,获得积分10
2秒前
2秒前
马骥发布了新的文献求助10
2秒前
3秒前
LI完成签到,获得积分10
3秒前
3秒前
华仔应助球球采纳,获得10
3秒前
林枫乐发布了新的文献求助10
3秒前
4秒前
bb完成签到,获得积分10
4秒前
tonight完成签到 ,获得积分10
6秒前
道阻且长发布了新的文献求助10
6秒前
单薄凌蝶发布了新的文献求助10
6秒前
7秒前
阿吉泰完成签到,获得积分10
7秒前
cdercder应助blackkk采纳,获得30
7秒前
复杂的鸿发布了新的文献求助10
8秒前
今年我必胖20斤完成签到,获得积分10
8秒前
深情安青应助KINGMach采纳,获得10
8秒前
sundial发布了新的文献求助10
8秒前
彭于晏应助道阻且长采纳,获得10
8秒前
科研通AI5应助道阻且长采纳,获得10
8秒前
852应助道阻且长采纳,获得10
8秒前
root完成签到 ,获得积分10
9秒前
小崔读研完成签到 ,获得积分10
9秒前
9秒前
万能图书馆应助韩梅采纳,获得10
9秒前
9秒前
9秒前
山海之间完成签到,获得积分10
10秒前
深情素阴发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540304
求助须知:如何正确求助?哪些是违规求助? 3117769
关于积分的说明 9332287
捐赠科研通 2815471
什么是DOI,文献DOI怎么找? 1547621
邀请新用户注册赠送积分活动 721067
科研通“疑难数据库(出版商)”最低求助积分说明 712445