Dynamic Android Malware Category Classification using Semi-Supervised Deep Learning

恶意软件 计算机科学 Android(操作系统) 人工智能 机器学习 Android恶意软件 监督学习 标记数据 深度学习 人工神经网络 计算机安全 操作系统
作者
Samaneh Mahdavifar,Andi Fitriah Abdul Kadir,Rasool Fatemi,Dima Alhadidi,Ali A. Ghorbani
标识
DOI:10.1109/dasc-picom-cbdcom-cyberscitech49142.2020.00094
摘要

Due to the significant threat of Android mobile malware, its detection has become increasingly important. Despite the academic and industrial attempts, devising a robust and efficient solution for Android malware detection and category classification is still an open problem. Supervised machine learning has been used to solve this issue. However, it is far to be perfect because it requires a significant amount of malicious and benign code to be identified and labeled beforehand. Since labeled data is expensive and difficult to get while unlabeled data is abundant and cheap in this context, we resort to a semi-supervised learning technique for deep neural networks, namely pseudo-label, which we train using a set of labeled and unlabeled instances. We use dynamic analysis to craft dynamic behavior profiles as feature vectors. Furthermore, we develop a new dataset, namely CICMalDroid2020, which includes 17,341 most recent samples of five different Android apps categories: Adware, Banking, SMS, Riskware, and Benign. Our offered dataset comprises the most complete captured static and dynamic features among publicly available datasets. We evaluate our proposed model on CICMalDroid2020 and conduct a comparison with Label Propagation (LP), a well-known semi-supervised machine learning technique, and other common machine learning algorithms. The experimental results show that the model can classify Android apps with respect to malware category with F 1 -Score of 97.84 percent and a false positive rate of 2.76 percent, considerably higher than LP. These results demonstrate the robustness of our model despite the small number of labeled instances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助10
刚刚
1秒前
小芳发布了新的文献求助50
2秒前
2秒前
香蕉觅云应助HaHa007采纳,获得10
3秒前
江瀛发布了新的文献求助10
3秒前
lcz发布了新的文献求助10
4秒前
5秒前
席孤风完成签到,获得积分10
7秒前
大饼完成签到,获得积分10
9秒前
10秒前
12秒前
13秒前
隐形曼青应助眸染瞳鸢采纳,获得10
14秒前
JamesPei应助细心的乐枫采纳,获得10
15秒前
2024顺顺利利完成签到 ,获得积分10
15秒前
晶晶发布了新的文献求助10
16秒前
17秒前
17秒前
lyx发布了新的文献求助10
18秒前
19秒前
冷山scol发布了新的文献求助10
20秒前
20秒前
21秒前
22秒前
和谐诗双发布了新的文献求助10
22秒前
有魅力棉花糖完成签到,获得积分10
22秒前
lyx完成签到,获得积分10
23秒前
江瀛完成签到,获得积分10
24秒前
Mira发布了新的文献求助10
25秒前
欣欣发布了新的文献求助10
25秒前
xxxxx炒菜发布了新的文献求助10
26秒前
g3618完成签到,获得积分20
28秒前
29秒前
激情的含巧完成签到,获得积分10
29秒前
研友_8o5V2n发布了新的文献求助30
31秒前
所所应助水博士采纳,获得10
33秒前
懵懂的白凝完成签到,获得积分10
33秒前
丸太子发布了新的文献求助10
33秒前
34秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346345
求助须知:如何正确求助?哪些是违规求助? 2973142
关于积分的说明 8657815
捐赠科研通 2653539
什么是DOI,文献DOI怎么找? 1453184
科研通“疑难数据库(出版商)”最低求助积分说明 672782
邀请新用户注册赠送积分活动 662665