亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Learning Enriched Features for Real Image Restoration and Enhancement

计算机科学 卷积神经网络 水准点(测量) 人工智能 块(置换群论) 图像分辨率 卷积(计算机科学) 图像(数学) 特征(语言学) 模式识别(心理学) 计算机视觉 人工神经网络 几何学 哲学 语言学 数学 地理 大地测量学
作者
Syed Waqas Zamir,Aditya Arora,Salman Khan,Munawar Hayat,Fahad Shahbaz Khan,Ming–Hsuan Yang,Ling Shao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 492-511 被引量:606
标识
DOI:10.1007/978-3-030-58595-2_30
摘要

With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography and medical imaging. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present an architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anne完成签到,获得积分10
19秒前
mumu完成签到 ,获得积分10
1分钟前
万邦德完成签到,获得积分10
1分钟前
俭朴的飞绿完成签到,获得积分10
1分钟前
1分钟前
mumu发布了新的文献求助30
1分钟前
kiko完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助50
2分钟前
lsl完成签到 ,获得积分10
3分钟前
王杉杉完成签到 ,获得积分10
3分钟前
3分钟前
tyh完成签到,获得积分10
3分钟前
tyh发布了新的文献求助30
3分钟前
TBHP发布了新的文献求助10
5分钟前
Tyj完成签到,获得积分10
5分钟前
TBHP完成签到,获得积分10
6分钟前
Dai应助科研通管家采纳,获得10
6分钟前
搜集达人应助摘星数羊采纳,获得10
6分钟前
6分钟前
6分钟前
摘星数羊发布了新的文献求助10
6分钟前
来路遥迢发布了新的文献求助10
6分钟前
大模型应助摘星数羊采纳,获得10
6分钟前
7分钟前
7分钟前
ZR完成签到,获得积分10
7分钟前
yiyi完成签到 ,获得积分10
7分钟前
小马甲应助坚强的云朵采纳,获得10
7分钟前
科研通AI5应助来路遥迢采纳,获得10
7分钟前
8分钟前
浮游应助野狗拉丽采纳,获得10
8分钟前
大个应助南芜山为伴采纳,获得10
9分钟前
9分钟前
9分钟前
南芜山为伴完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
情怀应助科研通管家采纳,获得10
10分钟前
Dai应助科研通管家采纳,获得10
10分钟前
Dai应助科研通管家采纳,获得10
10分钟前
852应助科研通管家采纳,获得10
10分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5148752
求助须知:如何正确求助?哪些是违规求助? 4345053
关于积分的说明 13530075
捐赠科研通 4187207
什么是DOI,文献DOI怎么找? 2296082
邀请新用户注册赠送积分活动 1296488
关于科研通互助平台的介绍 1240462