Learning Enriched Features for Real Image Restoration and Enhancement

计算机科学 卷积神经网络 水准点(测量) 人工智能 块(置换群论) 图像分辨率 卷积(计算机科学) 图像(数学) 特征(语言学) 模式识别(心理学) 计算机视觉 人工神经网络 几何学 哲学 语言学 数学 地理 大地测量学
作者
Syed Waqas Zamir,Aditya Arora,Salman Khan,Munawar Hayat,Fahad Shahbaz Khan,Ming–Hsuan Yang,Ling Shao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 492-511 被引量:234
标识
DOI:10.1007/978-3-030-58595-2_30
摘要

With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography and medical imaging. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present an architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
June完成签到 ,获得积分10
1秒前
1秒前
舒适听白完成签到,获得积分10
1秒前
Miracle发布了新的文献求助10
2秒前
ZSZ发布了新的文献求助20
2秒前
小太阳红红火火完成签到,获得积分10
2秒前
3秒前
朱莉发布了新的文献求助10
3秒前
4秒前
4秒前
完美世界应助LPVV采纳,获得10
6秒前
花玥鹿完成签到,获得积分10
6秒前
共享精神应助Arya123000采纳,获得10
6秒前
江边的卡夫卡完成签到,获得积分10
7秒前
coffee333发布了新的文献求助10
7秒前
义气的钥匙完成签到,获得积分10
7秒前
7秒前
yaoccccchen完成签到,获得积分10
7秒前
8秒前
CipherSage应助轩辕德地采纳,获得10
9秒前
立冬发布了新的文献求助10
9秒前
9秒前
苹果完成签到,获得积分10
10秒前
10秒前
轻松的雪枫完成签到,获得积分10
10秒前
10秒前
10秒前
xzx发布了新的文献求助10
10秒前
科目三应助周末采纳,获得10
10秒前
11秒前
车佳莹完成签到,获得积分10
11秒前
11秒前
treasure完成签到,获得积分10
12秒前
xiaoxiao发布了新的文献求助10
12秒前
昌怜烟发布了新的文献求助10
13秒前
Max发布了新的文献求助10
13秒前
李爱国应助来日方长采纳,获得10
13秒前
dandan完成签到,获得积分20
14秒前
终于花开日完成签到 ,获得积分10
14秒前
14秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Sensory analysis — Methodology — Guidelines for the measurement of the performance of a quantitative descriptive sensory panel 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3246076
求助须知:如何正确求助?哪些是违规求助? 2889679
关于积分的说明 8259727
捐赠科研通 2558094
什么是DOI,文献DOI怎么找? 1387004
科研通“疑难数据库(出版商)”最低求助积分说明 650362
邀请新用户注册赠送积分活动 626793