Learning Enriched Features for Real Image Restoration and Enhancement

计算机科学 卷积神经网络 水准点(测量) 人工智能 块(置换群论) 图像分辨率 卷积(计算机科学) 图像(数学) 特征(语言学) 模式识别(心理学) 计算机视觉 人工神经网络 几何学 哲学 语言学 数学 地理 大地测量学
作者
Syed Waqas Zamir,Aditya Arora,Salman Khan,Munawar Hayat,Fahad Shahbaz Khan,Ming–Hsuan Yang,Ling Shao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 492-511 被引量:234
标识
DOI:10.1007/978-3-030-58595-2_30
摘要

With the goal of recovering high-quality image content from its degraded version, image restoration enjoys numerous applications, such as in surveillance, computational photography and medical imaging. Recently, convolutional neural networks (CNNs) have achieved dramatic improvements over conventional approaches for image restoration task. Existing CNN-based methods typically operate either on full-resolution or on progressively low-resolution representations. In the former case, spatially precise but contextually less robust results are achieved, while in the latter case, semantically reliable but spatially less accurate outputs are generated. In this paper, we present an architecture with the collective goals of maintaining spatially-precise high-resolution representations through the entire network and receiving strong contextual information from the low-resolution representations. The core of our approach is a multi-scale residual block containing several key elements: (a) parallel multi-resolution convolution streams for extracting multi-scale features, (b) information exchange across the multi-resolution streams, (c) spatial and channel attention mechanisms for capturing contextual information, and (d) attention based multi-scale feature aggregation. In a nutshell, our approach learns an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details. Extensive experiments on five real image benchmark datasets demonstrate that our method, named as MIRNet, achieves state-of-the-art results for image denoising, super-resolution, and image enhancement. The source code and pre-trained models are available at https://github.com/swz30/MIRNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
豌豆发布了新的文献求助10
1秒前
2秒前
言叶完成签到,获得积分10
2秒前
3秒前
CipherSage应助清新的冷松采纳,获得10
3秒前
JamesPei应助Poyd采纳,获得10
4秒前
科目三应助药学牛马采纳,获得10
5秒前
lixm发布了新的文献求助10
6秒前
NAA完成签到,获得积分10
7秒前
7秒前
tao_blue完成签到,获得积分10
7秒前
荔枝完成签到,获得积分20
7秒前
7秒前
8秒前
许多知识完成签到,获得积分10
8秒前
缓慢的战斗机完成签到,获得积分20
9秒前
圣晟胜发布了新的文献求助10
9秒前
科研通AI5应助nextconnie采纳,获得10
10秒前
陈朝旧迹完成签到,获得积分10
10秒前
无花果应助虚心海燕采纳,获得10
11秒前
sun发布了新的文献求助30
12秒前
12秒前
KBYer完成签到,获得积分10
12秒前
FashionBoy应助阳阳采纳,获得10
12秒前
许多知识发布了新的文献求助10
13秒前
苏源智完成签到,获得积分10
13秒前
Andy完成签到 ,获得积分10
15秒前
明理晓霜发布了新的文献求助10
17秒前
ZHANGMANLI0422关注了科研通微信公众号
17秒前
M先生发布了新的文献求助30
18秒前
FashionBoy应助许多知识采纳,获得10
19秒前
Poyd完成签到,获得积分10
22秒前
22秒前
故意的傲玉应助tao_blue采纳,获得10
23秒前
23秒前
kid1912完成签到,获得积分0
23秒前
小马甲应助一网小海蜇采纳,获得10
26秒前
专一的笑阳完成签到 ,获得积分10
26秒前
xuesensu完成签到 ,获得积分10
30秒前
豌豆完成签到,获得积分10
31秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849