A deep learning algorithm to detect chronic kidney disease from retinal photographs in community-based populations

视网膜 肾脏疾病 人工智能 计算机科学 计算机视觉 深度学习 医学 眼科 内科学
作者
Charumathi Sabanayagam,Dejiang Xu,Daniel Shu Wei Ting,Simon Nusinovici,Riswana Banu,Haslina Hamzah,Cynthia Ciwei Lim,Yih‐Chung Tham,Carol Y. Cheung,E. Shyong Tai,Ya Xing Wang,Jost B. Jonas,Ching‐Yu Cheng,Mong Li Lee,Wynne Hsu,Tien Yin Wong
出处
期刊:The Lancet Digital Health [Elsevier]
卷期号:2 (6): e295-e302 被引量:185
标识
DOI:10.1016/s2589-7500(20)30063-7
摘要

BackgroundScreening for chronic kidney disease is a challenge in community and primary care settings, even in high-income countries. We developed an artificial intelligence deep learning algorithm (DLA) to detect chronic kidney disease from retinal images, which could add to existing chronic kidney disease screening strategies.MethodsWe used data from three population-based, multiethnic, cross-sectional studies in Singapore and China. The Singapore Epidemiology of Eye Diseases study (SEED, patients aged ≥40 years) was used to develop (5188 patients) and validate (1297 patients) the DLA. External testing was done on two independent datasets: the Singapore Prospective Study Program (SP2, 3735 patients aged ≥25 years) and the Beijing Eye Study (BES, 1538 patients aged ≥40 years). Chronic kidney disease was defined as estimated glomerular filtration rate less than 60 mL/min per 1·73m2. Three models were trained: 1) image DLA; 2) risk factors (RF) including age, sex, ethnicity, diabetes, and hypertension; and 3) hybrid DLA combining image and RF. Model performances were evaluated using the area under the receiver operating characteristic curve (AUC).FindingsIn the SEED validation dataset, the AUC was 0·911 for image DLA (95% CI 0·886 −0·936), 0·916 for RF (0·891–0·941), and 0·938 for hybrid DLA (0·917–0·959). Corresponding estimates in the SP2 testing dataset were 0·733 for image DLA (95% CI 0·696–0·770), 0·829 for RF (0·797–0·861), and 0·810 for hybrid DLA (0·776–0·844); and in the BES testing dataset estimates were 0·835 for image DLA (0·767–0·903), 0·887 for RF (0·828–0·946), and 0·858 for hybrid DLA (0·794–0·922). AUC estimates were similar in subgroups of people with diabetes (image DLA 0·889 [95% CI 0·850–0·928], RF 0·899 [0·862–0·936], hybrid 0·925 [0·893–0·957]) and hypertension (image DLA 0·889 [95% CI 0·860–0·918], RF 0·889 [0·860–0·918], hybrid 0·918 [0·893–0·943]).InterpretationA retinal image DLA shows good performance for estimating chronic kidney disease, underlying the feasibility of using retinal photography as an adjunctive or opportunistic screening tool for chronic kidney disease in community populations.FundingNational Medical Research Council, Singapore.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
渊崖曙春应助年轻的晋鹏采纳,获得10
1秒前
卷心菜完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
打打应助LonelyJudger采纳,获得10
3秒前
康桥发布了新的文献求助10
4秒前
幽壑之潜蛟应助枫叶采纳,获得10
4秒前
orixero应助枫叶采纳,获得10
4秒前
4秒前
7秒前
ppp完成签到,获得积分10
7秒前
黄洁滢发布了新的文献求助10
8秒前
稳重采枫发布了新的文献求助10
8秒前
8秒前
怎么可能会凉完成签到 ,获得积分10
8秒前
万能图书馆应助小洛采纳,获得10
9秒前
10秒前
小汤发布了新的文献求助10
11秒前
epmoct完成签到 ,获得积分10
11秒前
snow_dragon完成签到 ,获得积分10
11秒前
卢佳伟发布了新的文献求助10
11秒前
Chen发布了新的文献求助10
12秒前
共享精神应助Starry采纳,获得10
13秒前
13秒前
斯文涔雨发布了新的文献求助10
13秒前
14秒前
Owen应助111采纳,获得10
15秒前
16秒前
共享精神应助老实大米采纳,获得10
16秒前
稳重采枫完成签到,获得积分10
17秒前
17秒前
adamchris发布了新的文献求助150
18秒前
18秒前
西江婉儿完成签到 ,获得积分10
19秒前
zhunzhunzhun发布了新的文献求助10
19秒前
心平气和完成签到,获得积分10
19秒前
李爱国应助Yuqing采纳,获得10
20秒前
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483701
求助须知:如何正确求助?哪些是违规求助? 3072962
关于积分的说明 9128742
捐赠科研通 2764574
什么是DOI,文献DOI怎么找? 1517253
邀请新用户注册赠送积分活动 701974
科研通“疑难数据库(出版商)”最低求助积分说明 700831