动力学
热力学平衡
热力学
亚稳态
平衡热力学
相(物质)
材料科学
结晶
化学
物理
有机化学
量子力学
作者
Matteo Bianchini,Jingyang Wang,Raphaële J. Clément,Bin Ouyang,Penghao Xiao,Daniil A. Kitchaev,Tan Shi,Yaqian Zhang,Yan Wang,Haegyeom Kim,Ming‐Jian Zhang,Jianming Bai,Feng Wang,Wenhao Sun,Gerbrand Ceder
出处
期刊:Nature Materials
[Springer Nature]
日期:2020-05-18
卷期号:19 (10): 1088-1095
被引量:173
标识
DOI:10.1038/s41563-020-0688-6
摘要
In the synthesis of inorganic materials, reactions often yield non-equilibrium kinetic byproducts instead of the thermodynamic equilibrium phase. Understanding the competition between thermodynamics and kinetics is a fundamental step towards the rational synthesis of target materials. Here, we use in situ synchrotron X-ray diffraction to investigate the multistage crystallization pathways of the important two-layer (P2) sodium oxides Na0.67MO2 (M = Co, Mn). We observe a series of fast non-equilibrium phase transformations through metastable three-layer O3, O3′ and P3 phases before formation of the equilibrium two-layer P2 polymorph. We present a theoretical framework to rationalize the observed phase progression, demonstrating that even though P2 is the equilibrium phase, compositionally unconstrained reactions between powder precursors favour the formation of non-equilibrium three-layered intermediates. These insights can guide the choice of precursors and parameters employed in the solid-state synthesis of ceramic materials, and constitutes a step forward in unravelling the complex interplay between thermodynamics and kinetics during materials synthesis. Understanding the competition between thermodynamics and kinetics is crucial for the rational synthesis of inorganic materials. The synthesis of two-layer sodium metal oxides is investigated by in situ synchrotron XRD and a model is developed to rationalize why the observed phase progression proceeds through non-equilibrium three-layered intermediates.
科研通智能强力驱动
Strongly Powered by AbleSci AI