Current Challenges and Future Directions in Diffusion MRI: From Model- to Data- Driven Analysis

纤维束成像 磁共振弥散成像 计算机科学 背景(考古学) 体素 数据科学 人工智能 透视图(图形) 信号(编程语言) 磁共振成像 医学 地理 放射科 考古 程序设计语言
作者
Kurt G. Schilling,Xue Bing,Adam W. Anderson,Bennett A. Landman
出处
期刊:Mathematics and visualization 卷期号:: 63-78
标识
DOI:10.1007/978-3-030-52893-5_6
摘要

Diffusion weighted MRI is a prominent non-invasive modality to probe in vivo tissue micro- and macro-structure and has been widely applied throughout neuro- and body imaging. The promise of micro-scale analyses has been in the creation of virtual biopsies that provide information in place of physical histology, while tractography and its related methods offer maps of the neuronal wiring through virtual dissection. While both approaches have had strong successes at the group level, specificity and sensitivity at the individual dataset/single subject level have been more elusive. Herein, we reflect on current challenges and potential future directions in the context of a futurist piece. As such, we go beyond the reasonably well-established science to offer hypotheses/postulates/challenges to encourage discussion and exploration. We postulate that there are transformative opportunities available if we complement our perspective of diffusion MRI as a signal that is explained by a tractable biophysical model with one in which data driven machine learning can inform us about detection, localization, and assessment of both normal and abnormal brain tissue in both local (voxels) and global connectivity. Towards this end, this manuscript describes challenges associated with achieving virtual biopsy (i.e., microstructural modeling) and virtual dissection (i.e., fiber tractography) and suggests opportunities to use data-driven techniques to improve modeling geometry, to learn features of the signal that may prove useful as biomarkers, and to harmonize signal, techniques, and datasets to improve tissue characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助刘鹏宇采纳,获得10
刚刚
一一完成签到,获得积分10
1秒前
南城雨落发布了新的文献求助10
1秒前
杜嘟嘟发布了新的文献求助30
2秒前
leave完成签到,获得积分10
2秒前
Cxyyyl完成签到 ,获得积分10
2秒前
芒竹完成签到,获得积分10
3秒前
乐山乐水完成签到,获得积分20
3秒前
3秒前
阿飞完成签到,获得积分10
4秒前
4秒前
pappper完成签到,获得积分10
4秒前
彭于晏应助01259采纳,获得30
4秒前
乐观的小鸡完成签到,获得积分10
5秒前
5秒前
传奇3应助好玩和有趣采纳,获得10
6秒前
js完成签到,获得积分10
6秒前
乐山乐水发布了新的文献求助10
6秒前
7秒前
明理的蜗牛完成签到,获得积分10
8秒前
8秒前
jiayouYi完成签到,获得积分10
9秒前
sunzhiyu233完成签到,获得积分20
9秒前
怡然菲音发布了新的文献求助10
9秒前
袁访天完成签到,获得积分10
10秒前
英姑应助RONG采纳,获得10
10秒前
10秒前
11秒前
冷酷尔琴发布了新的文献求助10
12秒前
12秒前
12秒前
kai_完成签到,获得积分10
13秒前
Tikh完成签到,获得积分10
13秒前
充电宝应助通~采纳,获得10
13秒前
科研雷锋发布了新的文献求助10
14秒前
坚强亦丝应助香蕉初瑶采纳,获得10
14秒前
wormzjl完成签到,获得积分10
15秒前
朱先生完成签到 ,获得积分10
15秒前
饱满的大碗完成签到 ,获得积分10
15秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740