重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Current Challenges and Future Directions in Diffusion MRI: From Model- to Data- Driven Analysis

纤维束成像 磁共振弥散成像 计算机科学 背景(考古学) 体素 数据科学 人工智能 透视图(图形) 信号(编程语言) 磁共振成像 医学 地理 放射科 考古 程序设计语言
作者
Kurt G. Schilling,Xue Bing,Adam W. Anderson,Bennett A. Landman
出处
期刊:Mathematics and visualization 卷期号:: 63-78
标识
DOI:10.1007/978-3-030-52893-5_6
摘要

Diffusion weighted MRI is a prominent non-invasive modality to probe in vivo tissue micro- and macro-structure and has been widely applied throughout neuro- and body imaging. The promise of micro-scale analyses has been in the creation of virtual biopsies that provide information in place of physical histology, while tractography and its related methods offer maps of the neuronal wiring through virtual dissection. While both approaches have had strong successes at the group level, specificity and sensitivity at the individual dataset/single subject level have been more elusive. Herein, we reflect on current challenges and potential future directions in the context of a futurist piece. As such, we go beyond the reasonably well-established science to offer hypotheses/postulates/challenges to encourage discussion and exploration. We postulate that there are transformative opportunities available if we complement our perspective of diffusion MRI as a signal that is explained by a tractable biophysical model with one in which data driven machine learning can inform us about detection, localization, and assessment of both normal and abnormal brain tissue in both local (voxels) and global connectivity. Towards this end, this manuscript describes challenges associated with achieving virtual biopsy (i.e., microstructural modeling) and virtual dissection (i.e., fiber tractography) and suggests opportunities to use data-driven techniques to improve modeling geometry, to learn features of the signal that may prove useful as biomarkers, and to harmonize signal, techniques, and datasets to improve tissue characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呀呀呀呀发布了新的文献求助10
1秒前
哭泣的小之完成签到,获得积分10
2秒前
FashionBoy应助Hui采纳,获得10
2秒前
CodeCraft应助研友来科研啊采纳,获得10
3秒前
3秒前
4秒前
就离谱完成签到,获得积分10
5秒前
fei发布了新的文献求助200
5秒前
kuoh224完成签到,获得积分10
6秒前
万能图书馆应助huma采纳,获得10
6秒前
7秒前
zaro完成签到,获得积分10
7秒前
7秒前
情怀应助双休采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
葛一豪发布了新的文献求助10
9秒前
wuyanchi发布了新的文献求助10
9秒前
9秒前
冷艳的荷花完成签到,获得积分10
10秒前
达不溜完成签到,获得积分10
10秒前
dskwei发布了新的文献求助10
12秒前
科目三应助王易云采纳,获得10
13秒前
小柏学长完成签到,获得积分10
13秒前
13秒前
hardworkcd发布了新的文献求助10
14秒前
准炮打不准完成签到,获得积分10
14秒前
wanzixian发布了新的文献求助10
15秒前
15秒前
15秒前
16秒前
Tonson应助chh采纳,获得10
16秒前
17秒前
wuyanchi完成签到,获得积分10
18秒前
liu发布了新的文献求助10
18秒前
18秒前
18秒前
zlintcm发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707