Current Challenges and Future Directions in Diffusion MRI: From Model- to Data- Driven Analysis

纤维束成像 磁共振弥散成像 计算机科学 背景(考古学) 体素 数据科学 人工智能 透视图(图形) 信号(编程语言) 磁共振成像 医学 地理 放射科 考古 程序设计语言
作者
Kurt G. Schilling,Xue Bing,Adam W. Anderson,Bennett A. Landman
出处
期刊:Mathematics and visualization 卷期号:: 63-78
标识
DOI:10.1007/978-3-030-52893-5_6
摘要

Diffusion weighted MRI is a prominent non-invasive modality to probe in vivo tissue micro- and macro-structure and has been widely applied throughout neuro- and body imaging. The promise of micro-scale analyses has been in the creation of virtual biopsies that provide information in place of physical histology, while tractography and its related methods offer maps of the neuronal wiring through virtual dissection. While both approaches have had strong successes at the group level, specificity and sensitivity at the individual dataset/single subject level have been more elusive. Herein, we reflect on current challenges and potential future directions in the context of a futurist piece. As such, we go beyond the reasonably well-established science to offer hypotheses/postulates/challenges to encourage discussion and exploration. We postulate that there are transformative opportunities available if we complement our perspective of diffusion MRI as a signal that is explained by a tractable biophysical model with one in which data driven machine learning can inform us about detection, localization, and assessment of both normal and abnormal brain tissue in both local (voxels) and global connectivity. Towards this end, this manuscript describes challenges associated with achieving virtual biopsy (i.e., microstructural modeling) and virtual dissection (i.e., fiber tractography) and suggests opportunities to use data-driven techniques to improve modeling geometry, to learn features of the signal that may prove useful as biomarkers, and to harmonize signal, techniques, and datasets to improve tissue characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gjm发布了新的文献求助10
1秒前
1秒前
1秒前
情怀应助陈陈采纳,获得10
1秒前
1秒前
1秒前
Lucas应助科研通管家采纳,获得10
2秒前
2秒前
小狗熊吖i应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
3秒前
朱建军应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
pluto应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
刘鹏宇发布了新的文献求助10
4秒前
一一完成签到,获得积分10
5秒前
5秒前
Joe完成签到,获得积分10
6秒前
Owen应助风趣的凝雁采纳,获得10
6秒前
xxxllllll完成签到,获得积分10
6秒前
辛辛发布了新的文献求助10
7秒前
7秒前
7秒前
10秒前
不安豁完成签到,获得积分10
10秒前
xiaoyao完成签到,获得积分10
11秒前
12秒前
英俊的铭应助浮云采纳,获得10
12秒前
12秒前
如意的刚应助务实凡灵采纳,获得10
12秒前
qaq发布了新的文献求助10
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126