Current Challenges and Future Directions in Diffusion MRI: From Model- to Data- Driven Analysis

纤维束成像 磁共振弥散成像 计算机科学 背景(考古学) 体素 数据科学 人工智能 透视图(图形) 信号(编程语言) 磁共振成像 医学 地理 放射科 考古 程序设计语言
作者
Kurt G. Schilling,Xue Bing,Adam W. Anderson,Bennett A. Landman
出处
期刊:Mathematics and visualization 卷期号:: 63-78
标识
DOI:10.1007/978-3-030-52893-5_6
摘要

Diffusion weighted MRI is a prominent non-invasive modality to probe in vivo tissue micro- and macro-structure and has been widely applied throughout neuro- and body imaging. The promise of micro-scale analyses has been in the creation of virtual biopsies that provide information in place of physical histology, while tractography and its related methods offer maps of the neuronal wiring through virtual dissection. While both approaches have had strong successes at the group level, specificity and sensitivity at the individual dataset/single subject level have been more elusive. Herein, we reflect on current challenges and potential future directions in the context of a futurist piece. As such, we go beyond the reasonably well-established science to offer hypotheses/postulates/challenges to encourage discussion and exploration. We postulate that there are transformative opportunities available if we complement our perspective of diffusion MRI as a signal that is explained by a tractable biophysical model with one in which data driven machine learning can inform us about detection, localization, and assessment of both normal and abnormal brain tissue in both local (voxels) and global connectivity. Towards this end, this manuscript describes challenges associated with achieving virtual biopsy (i.e., microstructural modeling) and virtual dissection (i.e., fiber tractography) and suggests opportunities to use data-driven techniques to improve modeling geometry, to learn features of the signal that may prove useful as biomarkers, and to harmonize signal, techniques, and datasets to improve tissue characterization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
友好的小鸽子应助嘛呱采纳,获得10
3秒前
hzz完成签到,获得积分10
4秒前
薛定谔的猫完成签到,获得积分10
5秒前
ronnie发布了新的文献求助10
5秒前
6秒前
cc应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
大模型应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
shhoing应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
8秒前
cc应助科研通管家采纳,获得10
8秒前
sniper完成签到 ,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
8秒前
10秒前
丁牛青发布了新的文献求助10
10秒前
11秒前
cc完成签到,获得积分10
11秒前
13秒前
李斯濛发布了新的文献求助10
13秒前
hzwhz完成签到,获得积分10
15秒前
moumou发布了新的文献求助10
16秒前
rsdggsrser完成签到 ,获得积分10
17秒前
18秒前
19秒前
23秒前
Menisoda完成签到,获得积分10
24秒前
脑洞疼应助fczs采纳,获得10
25秒前
28秒前
高兴溪流应助樱书采纳,获得10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560719
求助须知:如何正确求助?哪些是违规求助? 4646051
关于积分的说明 14677115
捐赠科研通 4587167
什么是DOI,文献DOI怎么找? 2516853
邀请新用户注册赠送积分活动 1490320
关于科研通互助平台的介绍 1461136