亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Current Challenges and Future Directions in Diffusion MRI: From Model- to Data- Driven Analysis

纤维束成像 磁共振弥散成像 计算机科学 背景(考古学) 体素 数据科学 人工智能 透视图(图形) 信号(编程语言) 磁共振成像 医学 地理 放射科 考古 程序设计语言
作者
Kurt G. Schilling,Xue Bing,Adam W. Anderson,Bennett A. Landman
出处
期刊:Mathematics and visualization 卷期号:: 63-78
标识
DOI:10.1007/978-3-030-52893-5_6
摘要

Diffusion weighted MRI is a prominent non-invasive modality to probe in vivo tissue micro- and macro-structure and has been widely applied throughout neuro- and body imaging. The promise of micro-scale analyses has been in the creation of virtual biopsies that provide information in place of physical histology, while tractography and its related methods offer maps of the neuronal wiring through virtual dissection. While both approaches have had strong successes at the group level, specificity and sensitivity at the individual dataset/single subject level have been more elusive. Herein, we reflect on current challenges and potential future directions in the context of a futurist piece. As such, we go beyond the reasonably well-established science to offer hypotheses/postulates/challenges to encourage discussion and exploration. We postulate that there are transformative opportunities available if we complement our perspective of diffusion MRI as a signal that is explained by a tractable biophysical model with one in which data driven machine learning can inform us about detection, localization, and assessment of both normal and abnormal brain tissue in both local (voxels) and global connectivity. Towards this end, this manuscript describes challenges associated with achieving virtual biopsy (i.e., microstructural modeling) and virtual dissection (i.e., fiber tractography) and suggests opportunities to use data-driven techniques to improve modeling geometry, to learn features of the signal that may prove useful as biomarkers, and to harmonize signal, techniques, and datasets to improve tissue characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助GdYOUNGRAY采纳,获得10
17秒前
fasdfkgh完成签到,获得积分10
18秒前
隐形曼青应助要减肥的涑采纳,获得10
21秒前
26秒前
27秒前
FashionBoy应助采薇采纳,获得10
30秒前
GdYOUNGRAY发布了新的文献求助10
31秒前
33秒前
34秒前
34秒前
要减肥的涑完成签到,获得积分10
43秒前
ling361完成签到,获得积分10
1分钟前
嗯哼举报重要灵寒求助涉嫌违规
1分钟前
GdYOUNGRAY完成签到,获得积分20
1分钟前
GdYOUNGRAY发布了新的文献求助10
1分钟前
嗯哼举报不在乎过求助涉嫌违规
1分钟前
Jasper应助利邦采纳,获得10
1分钟前
1分钟前
依依发布了新的文献求助10
1分钟前
嗯哼举报qmx求助涉嫌违规
1分钟前
超人不会飞完成签到,获得积分10
1分钟前
嗯哼举报小胡求助涉嫌违规
1分钟前
1分钟前
嗯哼应助内向宛凝采纳,获得10
1分钟前
采薇发布了新的文献求助10
1分钟前
2分钟前
Hello应助采薇采纳,获得10
2分钟前
2分钟前
Endonucl发布了新的文献求助20
2分钟前
2分钟前
利邦发布了新的文献求助10
2分钟前
2分钟前
哭泣恋风完成签到 ,获得积分10
2分钟前
SciGPT应助just123采纳,获得30
2分钟前
烟花应助失重心跳采纳,获得10
2分钟前
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
2分钟前
SciGPT应助利邦采纳,获得10
2分钟前
2分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244714
求助须知:如何正确求助?哪些是违规求助? 2888396
关于积分的说明 8252799
捐赠科研通 2556854
什么是DOI,文献DOI怎么找? 1385423
科研通“疑难数据库(出版商)”最低求助积分说明 650157
邀请新用户注册赠送积分活动 626265