Ideas in Genomic Selection with the Potential to Transform Plant Molecular Breeding

最佳线性无偏预测 选择(遗传算法) 生物 亲属关系 全基因组关联研究 特质 加权 计算生物学 统计 计算机科学 进化生物学 遗传学 机器学习 数学 单核苷酸多态性 基因型 医学 基因 放射科 政治学 程序设计语言 法学
作者
Matthew McGowan,Jiabo Wang,Haixiao Dong,Xiaolei Liu,Yi Jia,Xiangfeng Wang,Hiroyoshi Iwata,Yutao Li,Alexander E. Lipka,Zhiwu Zhang
出处
期刊:Plant Breeding Reviews 卷期号:: 273-319 被引量:7
标识
DOI:10.1002/9781119828235.ch7
摘要

Estimation of breeding values through Best Linear Unbiased Prediction (BLUP) using pedigree-based kinship and Marker-Assisted Selection (MAS) are the two fundamental breeding methods used before and after the introduction of genetic markers, respectively. The emergence of high-density genome-wide markers has led to the development of two parallel series of approaches inspired by BLUP and MAS, which are collectively referred to as Genomic Selection (GS). The first series of GS methods alters pedigree-based BLUP by replacing pedigree-based kinship with marker-based kinship in a variety of ways, including weighting markers by their effects in genome-wide association study (GWAS), joining both pedigree- and marker-based kinship together in a single-step BLUP, and substituting individuals with groups in a compressed BLUP. The second series of GS methods estimates the effects for all genetic markers simultaneously. For the second series methods, the marker effects are summed together regardless of their individual significance. Instead of fitting individuals as random effects like in the BLUP series, the second series fits markers as random effects. Differing assumptions regarding the underlying distribution of these marker effects has resulted in the development of many Bayesian-based GS methods. This review highlights critical concept developments for both of these series and explores ongoing GS developments in machine learning, multiple trait selection, and adaptation for hybrid breeding. Furthermore, considering the increasing use and variety of GS methods in plant breeding programs, this review addresses important concerns for future GS development and application, such as the use of GWAS-assisted GS, the long-term effectiveness of GS methods, and the valid assessment of prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷酷鱼发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
caffeine发布了新的文献求助10
2秒前
zxb发布了新的文献求助10
3秒前
李健应助寒月如雪采纳,获得10
3秒前
4秒前
skier发布了新的文献求助10
4秒前
thousandlong发布了新的文献求助10
5秒前
赘婿应助YY采纳,获得10
5秒前
徐逊发布了新的文献求助10
5秒前
more发布了新的文献求助10
5秒前
6秒前
清爽乐菱应助哇咔咔采纳,获得30
6秒前
GH完成签到,获得积分10
6秒前
6秒前
风趣的从安完成签到 ,获得积分10
7秒前
彭于晏应助酷酷的小张采纳,获得10
7秒前
9秒前
zino发布了新的文献求助10
9秒前
9秒前
9秒前
我的文献发布了新的文献求助20
10秒前
thousandlong完成签到,获得积分10
11秒前
11秒前
奋斗蜗牛发布了新的文献求助10
12秒前
沸羊羊发布了新的文献求助10
12秒前
skier完成签到,获得积分10
12秒前
12秒前
BINGBONG完成签到,获得积分10
13秒前
13秒前
biduoshen完成签到,获得积分10
14秒前
shulei发布了新的文献求助10
14秒前
充电宝应助tomorrow采纳,获得10
14秒前
科研通AI2S应助林柠采纳,获得10
15秒前
fd163c发布了新的文献求助20
15秒前
16秒前
17秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979440
求助须知:如何正确求助?哪些是违规求助? 3523402
关于积分的说明 11217322
捐赠科研通 3260886
什么是DOI,文献DOI怎么找? 1800231
邀请新用户注册赠送积分活动 878983
科研通“疑难数据库(出版商)”最低求助积分说明 807126