Ideas in Genomic Selection with the Potential to Transform Plant Molecular Breeding

最佳线性无偏预测 选择(遗传算法) 生物 亲属关系 全基因组关联研究 特质 加权 计算生物学 统计 计算机科学 进化生物学 遗传学 机器学习 数学 单核苷酸多态性 基因型 医学 基因 放射科 政治学 程序设计语言 法学
作者
Matthew McGowan,Jiabo Wang,Haixiao Dong,Xiaolei Liu,Yi Jia,Xiangfeng Wang,Hiroyoshi Iwata,Yutao Li,Alexander E. Lipka,Zhiwu Zhang
出处
期刊:Plant Breeding Reviews 卷期号:: 273-319 被引量:7
标识
DOI:10.1002/9781119828235.ch7
摘要

Estimation of breeding values through Best Linear Unbiased Prediction (BLUP) using pedigree-based kinship and Marker-Assisted Selection (MAS) are the two fundamental breeding methods used before and after the introduction of genetic markers, respectively. The emergence of high-density genome-wide markers has led to the development of two parallel series of approaches inspired by BLUP and MAS, which are collectively referred to as Genomic Selection (GS). The first series of GS methods alters pedigree-based BLUP by replacing pedigree-based kinship with marker-based kinship in a variety of ways, including weighting markers by their effects in genome-wide association study (GWAS), joining both pedigree- and marker-based kinship together in a single-step BLUP, and substituting individuals with groups in a compressed BLUP. The second series of GS methods estimates the effects for all genetic markers simultaneously. For the second series methods, the marker effects are summed together regardless of their individual significance. Instead of fitting individuals as random effects like in the BLUP series, the second series fits markers as random effects. Differing assumptions regarding the underlying distribution of these marker effects has resulted in the development of many Bayesian-based GS methods. This review highlights critical concept developments for both of these series and explores ongoing GS developments in machine learning, multiple trait selection, and adaptation for hybrid breeding. Furthermore, considering the increasing use and variety of GS methods in plant breeding programs, this review addresses important concerns for future GS development and application, such as the use of GWAS-assisted GS, the long-term effectiveness of GS methods, and the valid assessment of prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助每天都好困采纳,获得10
1秒前
在水一方应助季末默相依采纳,获得10
1秒前
充电宝应助海城好人采纳,获得10
1秒前
linkin完成签到 ,获得积分10
2秒前
Jasmine完成签到,获得积分10
2秒前
3秒前
3秒前
5秒前
zh1858f发布了新的文献求助10
5秒前
汤泽琪发布了新的文献求助10
5秒前
7秒前
rooner完成签到,获得积分10
7秒前
7秒前
qing发布了新的文献求助10
7秒前
7秒前
8秒前
在水一方应助XLL小绿绿采纳,获得10
8秒前
liu完成签到,获得积分10
9秒前
哦呦看灰机完成签到,获得积分20
9秒前
上官若男应助qcj采纳,获得10
9秒前
豆花完成签到,获得积分10
10秒前
11秒前
Redemption发布了新的文献求助10
11秒前
bb发布了新的文献求助10
11秒前
刺五加发布了新的文献求助10
11秒前
汤泽琪完成签到,获得积分10
12秒前
12秒前
13秒前
Joy完成签到,获得积分20
13秒前
彭于晏应助哦呦看灰机采纳,获得10
13秒前
mo发布了新的文献求助10
13秒前
www发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
111发布了新的文献求助10
14秒前
15秒前
干净一鸣完成签到,获得积分10
15秒前
16秒前
缪连虎发布了新的文献求助10
16秒前
16秒前
immunity发布了新的文献求助10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743602
求助须知:如何正确求助?哪些是违规求助? 5414972
关于积分的说明 15348028
捐赠科研通 4884256
什么是DOI,文献DOI怎么找? 2625707
邀请新用户注册赠送积分活动 1574549
关于科研通互助平台的介绍 1531467