Ideas in Genomic Selection with the Potential to Transform Plant Molecular Breeding

最佳线性无偏预测 选择(遗传算法) 生物 亲属关系 全基因组关联研究 特质 加权 计算生物学 统计 计算机科学 进化生物学 遗传学 机器学习 数学 单核苷酸多态性 基因型 医学 基因 放射科 政治学 程序设计语言 法学
作者
Matthew McGowan,Jiabo Wang,Han Dong,Xiaolei Liu,Yang Jia,Xiangfeng Wang,Hiroyoshi Iwata,Yutao Li,Alexander E. Lipka,Zhiwu Zhang
出处
期刊:Plant Breeding Reviews 卷期号:: 273-319 被引量:3
标识
DOI:10.1002/9781119828235.ch7
摘要

Estimation of breeding values through Best Linear Unbiased Prediction (BLUP) using pedigree-based kinship and Marker-Assisted Selection (MAS) are the two fundamental breeding methods used before and after the introduction of genetic markers, respectively. The emergence of high-density genome-wide markers has led to the development of two parallel series of approaches inspired by BLUP and MAS, which are collectively referred to as Genomic Selection (GS). The first series of GS methods alters pedigree-based BLUP by replacing pedigree-based kinship with marker-based kinship in a variety of ways, including weighting markers by their effects in genome-wide association study (GWAS), joining both pedigree- and marker-based kinship together in a single-step BLUP, and substituting individuals with groups in a compressed BLUP. The second series of GS methods estimates the effects for all genetic markers simultaneously. For the second series methods, the marker effects are summed together regardless of their individual significance. Instead of fitting individuals as random effects like in the BLUP series, the second series fits markers as random effects. Differing assumptions regarding the underlying distribution of these marker effects has resulted in the development of many Bayesian-based GS methods. This review highlights critical concept developments for both of these series and explores ongoing GS developments in machine learning, multiple trait selection, and adaptation for hybrid breeding. Furthermore, considering the increasing use and variety of GS methods in plant breeding programs, this review addresses important concerns for future GS development and application, such as the use of GWAS-assisted GS, the long-term effectiveness of GS methods, and the valid assessment of prediction accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
薰硝壤应助科研通管家采纳,获得10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
领导范儿应助辛勤紫雪采纳,获得10
4秒前
失眠的香蕉完成签到 ,获得积分10
6秒前
小赞完成签到,获得积分10
7秒前
周二完成签到 ,获得积分10
11秒前
自信的网络完成签到 ,获得积分10
14秒前
fransiccarey完成签到,获得积分10
16秒前
一一一完成签到,获得积分10
20秒前
甜甜秋荷完成签到,获得积分10
23秒前
开放素完成签到 ,获得积分10
24秒前
指哪打哪完成签到,获得积分10
24秒前
糖加三勺完成签到 ,获得积分10
24秒前
mo完成签到 ,获得积分10
30秒前
风信子完成签到,获得积分10
36秒前
37秒前
坦率妖丽完成签到,获得积分10
38秒前
辛勤紫雪发布了新的文献求助10
43秒前
44秒前
十七完成签到 ,获得积分10
45秒前
宁士萧完成签到 ,获得积分10
47秒前
50秒前
尔信完成签到 ,获得积分10
51秒前
Xxxxxxx完成签到 ,获得积分10
54秒前
Lyn完成签到 ,获得积分10
55秒前
燕子完成签到,获得积分10
59秒前
lby完成签到 ,获得积分10
1分钟前
心已死何来心完成签到,获得积分10
1分钟前
今后应助辛勤紫雪采纳,获得10
1分钟前
完美世界应助mm_zxh采纳,获得10
1分钟前
bzdqsm完成签到,获得积分10
1分钟前
雨兔儿完成签到,获得积分10
1分钟前
春眠不觉小小酥完成签到,获得积分10
1分钟前
不羡江中仙完成签到 ,获得积分10
1分钟前
尊敬的半梅完成签到 ,获得积分10
1分钟前
1分钟前
食堂里的明湖鸭完成签到 ,获得积分10
1分钟前
葫芦芦芦完成签到 ,获得积分10
1分钟前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
Introduction to Modern Controls, with illustrations in MATLAB and Python 310
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056640
求助须知:如何正确求助?哪些是违规求助? 2713111
关于积分的说明 7434713
捐赠科研通 2358205
什么是DOI,文献DOI怎么找? 1249317
科研通“疑难数据库(出版商)”最低求助积分说明 607030
版权声明 596250