Ideas in Genomic Selection with the Potential to Transform Plant Molecular Breeding

最佳线性无偏预测 选择(遗传算法) 生物 亲属关系 全基因组关联研究 特质 加权 计算生物学 统计 计算机科学 进化生物学 遗传学 机器学习 数学 单核苷酸多态性 基因型 医学 基因 放射科 政治学 程序设计语言 法学
作者
Matthew McGowan,Jiabo Wang,Haixiao Dong,Xiaolei Liu,Yi Jia,Xiangfeng Wang,Hiroyoshi Iwata,Yutao Li,Alexander E. Lipka,Zhiwu Zhang
出处
期刊:Plant Breeding Reviews 卷期号:: 273-319 被引量:7
标识
DOI:10.1002/9781119828235.ch7
摘要

Estimation of breeding values through Best Linear Unbiased Prediction (BLUP) using pedigree-based kinship and Marker-Assisted Selection (MAS) are the two fundamental breeding methods used before and after the introduction of genetic markers, respectively. The emergence of high-density genome-wide markers has led to the development of two parallel series of approaches inspired by BLUP and MAS, which are collectively referred to as Genomic Selection (GS). The first series of GS methods alters pedigree-based BLUP by replacing pedigree-based kinship with marker-based kinship in a variety of ways, including weighting markers by their effects in genome-wide association study (GWAS), joining both pedigree- and marker-based kinship together in a single-step BLUP, and substituting individuals with groups in a compressed BLUP. The second series of GS methods estimates the effects for all genetic markers simultaneously. For the second series methods, the marker effects are summed together regardless of their individual significance. Instead of fitting individuals as random effects like in the BLUP series, the second series fits markers as random effects. Differing assumptions regarding the underlying distribution of these marker effects has resulted in the development of many Bayesian-based GS methods. This review highlights critical concept developments for both of these series and explores ongoing GS developments in machine learning, multiple trait selection, and adaptation for hybrid breeding. Furthermore, considering the increasing use and variety of GS methods in plant breeding programs, this review addresses important concerns for future GS development and application, such as the use of GWAS-assisted GS, the long-term effectiveness of GS methods, and the valid assessment of prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Re发布了新的文献求助10
刚刚
why完成签到,获得积分10
1秒前
啸傲发布了新的文献求助30
1秒前
科研通AI6应助焱冰采纳,获得10
1秒前
2秒前
2秒前
3秒前
4秒前
肉里完成签到,获得积分10
5秒前
小孩完成签到 ,获得积分10
5秒前
燚燚完成签到,获得积分0
5秒前
研友_08ozgZ完成签到,获得积分10
5秒前
Re完成签到,获得积分20
7秒前
7秒前
Bafanglaicai完成签到,获得积分10
7秒前
shhoing应助Nick采纳,获得20
7秒前
168发布了新的文献求助10
8秒前
111完成签到,获得积分10
8秒前
我吃小饼干完成签到,获得积分10
9秒前
9秒前
shinn发布了新的文献求助10
9秒前
10秒前
lym97完成签到 ,获得积分10
10秒前
10秒前
shuzi发布了新的文献求助10
10秒前
4652376完成签到 ,获得积分0
10秒前
11秒前
12秒前
juaner发布了新的文献求助10
12秒前
11发布了新的文献求助30
12秒前
所所应助lvshiwen采纳,获得30
12秒前
12秒前
13秒前
13秒前
祈雪完成签到,获得积分10
13秒前
小蘑菇应助玖文采纳,获得10
13秒前
未来学术司马懿完成签到,获得积分0
13秒前
田様应助隔壁小孩采纳,获得10
14秒前
远航完成签到,获得积分10
15秒前
haku发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531105
求助须知:如何正确求助?哪些是违规求助? 4620029
关于积分的说明 14571024
捐赠科研通 4559472
什么是DOI,文献DOI怎么找? 2498457
邀请新用户注册赠送积分活动 1478413
关于科研通互助平台的介绍 1449928