已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Ideas in Genomic Selection with the Potential to Transform Plant Molecular Breeding

最佳线性无偏预测 选择(遗传算法) 生物 亲属关系 全基因组关联研究 特质 加权 计算生物学 统计 计算机科学 进化生物学 遗传学 机器学习 数学 单核苷酸多态性 基因型 医学 基因 放射科 政治学 程序设计语言 法学
作者
Matthew McGowan,Jiabo Wang,Haixiao Dong,Xiaolei Liu,Yi Jia,Xiangfeng Wang,Hiroyoshi Iwata,Yutao Li,Alexander E. Lipka,Zhiwu Zhang
出处
期刊:Plant Breeding Reviews 卷期号:: 273-319 被引量:7
标识
DOI:10.1002/9781119828235.ch7
摘要

Estimation of breeding values through Best Linear Unbiased Prediction (BLUP) using pedigree-based kinship and Marker-Assisted Selection (MAS) are the two fundamental breeding methods used before and after the introduction of genetic markers, respectively. The emergence of high-density genome-wide markers has led to the development of two parallel series of approaches inspired by BLUP and MAS, which are collectively referred to as Genomic Selection (GS). The first series of GS methods alters pedigree-based BLUP by replacing pedigree-based kinship with marker-based kinship in a variety of ways, including weighting markers by their effects in genome-wide association study (GWAS), joining both pedigree- and marker-based kinship together in a single-step BLUP, and substituting individuals with groups in a compressed BLUP. The second series of GS methods estimates the effects for all genetic markers simultaneously. For the second series methods, the marker effects are summed together regardless of their individual significance. Instead of fitting individuals as random effects like in the BLUP series, the second series fits markers as random effects. Differing assumptions regarding the underlying distribution of these marker effects has resulted in the development of many Bayesian-based GS methods. This review highlights critical concept developments for both of these series and explores ongoing GS developments in machine learning, multiple trait selection, and adaptation for hybrid breeding. Furthermore, considering the increasing use and variety of GS methods in plant breeding programs, this review addresses important concerns for future GS development and application, such as the use of GWAS-assisted GS, the long-term effectiveness of GS methods, and the valid assessment of prediction accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
cen完成签到,获得积分10
1秒前
Andy完成签到,获得积分10
2秒前
shuxiansheng完成签到,获得积分10
2秒前
1111发布了新的文献求助10
3秒前
顺顺顺顺完成签到,获得积分10
4秒前
lijunliang完成签到,获得积分10
5秒前
5秒前
mdomse2109发布了新的文献求助10
6秒前
hbz完成签到,获得积分10
7秒前
FSDF发布了新的文献求助10
9秒前
Bugs完成签到,获得积分10
16秒前
17秒前
xun完成签到,获得积分20
17秒前
mdomse2109完成签到,获得积分10
18秒前
19秒前
啷个吃不饱完成签到 ,获得积分10
21秒前
董二千发布了新的文献求助10
22秒前
浮游应助科研通管家采纳,获得10
23秒前
NexusExplorer应助科研通管家采纳,获得10
23秒前
23秒前
乐乐应助科研通管家采纳,获得10
23秒前
浮游应助科研通管家采纳,获得10
23秒前
周钰波完成签到,获得积分10
24秒前
Holocene完成签到,获得积分10
24秒前
30秒前
111驳回了Owen应助
32秒前
852应助合规部采纳,获得30
32秒前
熊阿阿完成签到 ,获得积分10
33秒前
xirongx完成签到 ,获得积分10
39秒前
儒雅的裘完成签到,获得积分10
40秒前
40秒前
洁净方盒发布了新的文献求助10
43秒前
yechengjie完成签到,获得积分10
46秒前
王某完成签到 ,获得积分10
47秒前
科研通AI6应助FSDF采纳,获得10
47秒前
48秒前
善学以致用应助董二千采纳,获得10
49秒前
52秒前
echo发布了新的文献求助10
52秒前
coc发布了新的文献求助20
53秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502464
求助须知:如何正确求助?哪些是违规求助? 4598341
关于积分的说明 14463804
捐赠科研通 4531872
什么是DOI,文献DOI怎么找? 2483718
邀请新用户注册赠送积分活动 1466934
关于科研通互助平台的介绍 1439567