Multi-Domain Image-to-Image Translation via a Unified Circular Framework

图像翻译 翻译(生物学) 计算机科学 一致性(知识库) 图像(数学) 领域(数学分析) 人工智能 特征(语言学) 生成语法 机器翻译 相互信息 自然语言处理 模式识别(心理学) 理论计算机科学 机器学习 数学 语言学 化学 哲学 数学分析 生物化学 信使核糖核酸 基因
作者
Yuxi Wang,Zhaoxiang Zhang,Wangli Hao,Chunfeng Song
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 670-684 被引量:12
标识
DOI:10.1109/tip.2020.3037528
摘要

The image-to-image translation aims to learn the corresponding information between the source and target domains. Several state-of-the-art works have made significant progress based on generative adversarial networks (GANs). However, most existing one-to-one translation methods ignore the correlations among different domain pairs. We argue that there is common information among different domain pairs and it is vital to multiple domain pairs translation. In this paper, we propose a unified circular framework for multiple domain pairs translation, leveraging a shared knowledge module across numerous domains. One selected translation pair can benefit from the complementary information from other pairs, and the sharing knowledge is conducive to mutual learning between domains. Moreover, absolute consistency loss is proposed and applied in the corresponding feature maps to ensure intra-domain consistency. Furthermore, our model can be trained in an end-to-end manner. Extensive experiments demonstrate the effectiveness of our approach on several complex translation scenarios, such as Thermal IR switching, weather changing, and semantic transfer tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tonald Yang完成签到 ,获得积分20
3秒前
4秒前
落后的怀梦完成签到 ,获得积分10
5秒前
陈坤完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
斯文败类应助zgx采纳,获得10
10秒前
默默完成签到 ,获得积分10
10秒前
KY Mr.WANG完成签到,获得积分10
10秒前
24秒前
guoxingliu完成签到,获得积分10
28秒前
36秒前
阳佟水蓉完成签到,获得积分10
37秒前
gdgd完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
42秒前
叮叮当当完成签到,获得积分10
44秒前
47秒前
47秒前
电致阿光完成签到,获得积分10
48秒前
ccc完成签到 ,获得积分10
50秒前
51秒前
zgx发布了新的文献求助10
53秒前
i2stay完成签到,获得积分10
53秒前
馒头完成签到,获得积分10
55秒前
MS903完成签到,获得积分10
1分钟前
CJW完成签到 ,获得积分10
1分钟前
韧迹完成签到 ,获得积分0
1分钟前
mmd完成签到 ,获得积分10
1分钟前
七一安完成签到 ,获得积分10
1分钟前
浪麻麻完成签到 ,获得积分10
1分钟前
包容的剑完成签到 ,获得积分10
1分钟前
等待的大炮完成签到,获得积分10
1分钟前
注水萝卜完成签到 ,获得积分10
1分钟前
Chem34完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
hhh2018687完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038039
求助须知:如何正确求助?哪些是违规求助? 3575756
关于积分的说明 11373782
捐赠科研通 3305574
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022