材料科学
光催化
掺杂剂
纤锌矿晶体结构
兴奋剂
过渡金属
光降解
纳米颗粒
纳米材料
纳米技术
X射线光电子能谱
化学工程
催化作用
无机化学
锌
光电子学
冶金
有机化学
化学
工程类
作者
Kezhen Qi,Xiaohan Xing,Amir Zada,Mengyu Li,Qing Wang,Shuyuan Liu,Huaxiang Lin,Guangzhao Wang
标识
DOI:10.1016/j.ceramint.2019.09.116
摘要
Transition metal doped ZnO (TM-ZnO) nanoparticles with 3% dopant content are successfully prepared via a simple solvothermal route. This work highlights Mn, Fe, Co, Ni or Cu ions as the dopant transition metals. The as-prepared samples are wurtzite phase ZnO crystals, and the average sizes of undoped ZnO and TM-ZnO nanoparticles range from 200 nm to 400 nm. XPS studies confirm that the transition metal ions are successfully doped into the crystal lattice of ZnO. The band gaps of the undoped ZnO and TM-ZnO crystals are calculated by using UV-DRS spectroscopic measurements. The visible light response of ZnO nanomaterials is improved by doping transition metal ions. For investigating the influence of transition metal doping on the photocatalytic performance of ZnO, the photodegradation rate of methylene blue (MB) is investigated under simulated sunlight irradiation. The photocatalytic properties of ZnO doped with transition metals are improved at different degrees, among which Cu-doped ZnO exhibits the best photocatalytic performance. Based on density functional theory (DFT) calculation result, a possible photocatalytic mechanism is proposed. Furthermore, the antibacterial performance of Cu-doped ZnO is investigated by selecting E. coli, under simulated sunlight irradiation and remarkable sterilization of E. coli is achieved.
科研通智能强力驱动
Strongly Powered by AbleSci AI