Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics

无线电技术 医学 磁共振成像 乳腺癌 计算机科学 放射科 人工智能 癌症 内科学
作者
Ming Fan,Wei Yuan,Wenrui Zhao,Maosheng Xu,Shiwei Wang,Xin Gao,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 1632-1642 被引量:84
标识
DOI:10.1109/jbhi.2019.2956351
摘要

Histologic grade and Ki-67 proliferation status are important clinical indictors for breast cancer prognosis and treatment. The purpose of this study is to improve prediction accuracy of these clinical indicators based on tumor radiomic analysis.We jointly predicted Ki-67 and tumor grade with a multitask learning framework by separately utilizing radiomics from tumor MRI series. Additionally, we showed how multitask learning models (MTLs) could be extended to combined radiomics from the MRI series for a better prediction based on the assumption that features from different sources of images share common patterns while providing complementary information. Tumor radiomic analysis was performed with morphological, statistical and textural features extracted on the DWI and dynamic contrast-enhanced MRI (DCE-MRI) series of the precontrast and subtraction images, respectively.Joint prediction of Ki-67 status and tumor grade on MR images using the MTL achieved performance improvements over that of single-task-based predictive models. Similarly, for the prediction tasks of Ki-67 and tumor grade, the MTL for combined precontrast and apparent diffusion coefficient (ADC) images achieved AUCs of 0.811 and 0.816, which were significantly better than that of the single-task- based model with p values of 0.005 and 0.017, respectively.Mapping MRI radiomics to two related clinical indicators improves prediction performance for both Ki-67 expression level and tumor grade.Joint prediction of indicators by multitask learning that combines correlations of MRI radiomics is important for optimal tumor therapy and treatment because clinical decisions are made by integrating multiple clinical indicators.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助10
1秒前
scimaker发布了新的文献求助10
2秒前
2秒前
light发布了新的文献求助10
3秒前
细腻的山水完成签到 ,获得积分10
3秒前
孙嘉畯完成签到 ,获得积分10
4秒前
4秒前
润润轩轩发布了新的文献求助10
5秒前
5秒前
糖葫芦完成签到,获得积分10
5秒前
5秒前
香蕉觅云应助wgl200212采纳,获得10
5秒前
6秒前
陈陈陈完成签到,获得积分10
6秒前
6秒前
李健应助不是二次元采纳,获得10
6秒前
7秒前
坚强煜城完成签到,获得积分10
7秒前
赘婿应助眯眯眼采纳,获得10
7秒前
李健应助pooh采纳,获得10
7秒前
桐桐应助light采纳,获得10
8秒前
LeeChanmn发布了新的文献求助10
8秒前
852应助小迷糊采纳,获得10
8秒前
Minus完成签到,获得积分10
8秒前
左囧完成签到,获得积分10
8秒前
阿浩完成签到,获得积分10
10秒前
张小哥12发布了新的文献求助30
10秒前
10秒前
合适绮完成签到,获得积分10
10秒前
10秒前
酸菜余完成签到,获得积分10
10秒前
科目三应助争取少吃点采纳,获得10
10秒前
11秒前
NoGtime发布了新的文献求助10
11秒前
坚强煜城发布了新的文献求助10
11秒前
Cassie发布了新的文献求助20
11秒前
大个应助可靠的冰萍采纳,获得10
12秒前
12秒前
imao发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505532
求助须知:如何正确求助?哪些是违规求助? 4601172
关于积分的说明 14475722
捐赠科研通 4535228
什么是DOI,文献DOI怎么找? 2485237
邀请新用户注册赠送积分活动 1468262
关于科研通互助平台的介绍 1440718