Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics

无线电技术 医学 磁共振成像 乳腺癌 计算机科学 放射科 人工智能 癌症 内科学
作者
Ming Fan,Wei Yuan,Wenrui Zhao,Maosheng Xu,Shiwei Wang,Xin Gao,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 1632-1642 被引量:83
标识
DOI:10.1109/jbhi.2019.2956351
摘要

Histologic grade and Ki-67 proliferation status are important clinical indictors for breast cancer prognosis and treatment. The purpose of this study is to improve prediction accuracy of these clinical indicators based on tumor radiomic analysis.We jointly predicted Ki-67 and tumor grade with a multitask learning framework by separately utilizing radiomics from tumor MRI series. Additionally, we showed how multitask learning models (MTLs) could be extended to combined radiomics from the MRI series for a better prediction based on the assumption that features from different sources of images share common patterns while providing complementary information. Tumor radiomic analysis was performed with morphological, statistical and textural features extracted on the DWI and dynamic contrast-enhanced MRI (DCE-MRI) series of the precontrast and subtraction images, respectively.Joint prediction of Ki-67 status and tumor grade on MR images using the MTL achieved performance improvements over that of single-task-based predictive models. Similarly, for the prediction tasks of Ki-67 and tumor grade, the MTL for combined precontrast and apparent diffusion coefficient (ADC) images achieved AUCs of 0.811 and 0.816, which were significantly better than that of the single-task- based model with p values of 0.005 and 0.017, respectively.Mapping MRI radiomics to two related clinical indicators improves prediction performance for both Ki-67 expression level and tumor grade.Joint prediction of indicators by multitask learning that combines correlations of MRI radiomics is important for optimal tumor therapy and treatment because clinical decisions are made by integrating multiple clinical indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
研文呐完成签到,获得积分10
3秒前
Vivienne发布了新的文献求助10
4秒前
完美世界应助不爱吃香菜采纳,获得10
4秒前
4秒前
1989完成签到,获得积分10
5秒前
hxl发布了新的文献求助10
5秒前
6秒前
小二郎应助dhh采纳,获得10
6秒前
科研通AI2S应助浅笑_随风采纳,获得10
7秒前
7秒前
开心的语蕊完成签到 ,获得积分10
8秒前
Vin完成签到 ,获得积分10
8秒前
坚强藏鸟发布了新的文献求助10
9秒前
9秒前
小二郎应助李佳洁采纳,获得10
9秒前
9秒前
10秒前
希望天下0贩的0应助nickel采纳,获得10
10秒前
天地一体完成签到,获得积分10
10秒前
10秒前
11秒前
AJ完成签到 ,获得积分10
11秒前
yc发布了新的文献求助10
11秒前
无奈花瓣完成签到,获得积分10
12秒前
今麦郎发布了新的文献求助10
13秒前
打打应助凡仔采纳,获得10
13秒前
13秒前
舒适荣轩发布了新的文献求助20
14秒前
misong发布了新的文献求助10
14秒前
15秒前
maox1aoxin应助研友_qZ6V1Z采纳,获得30
15秒前
liu完成签到 ,获得积分10
16秒前
lucky完成签到 ,获得积分10
17秒前
d叨叨鱼发布了新的文献求助10
17秒前
科研通AI2S应助执着的书桃采纳,获得10
20秒前
21秒前
22秒前
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
Shape Determination of Large Sedimental Rock Fragments 2000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133289
求助须知:如何正确求助?哪些是违规求助? 2784437
关于积分的说明 7766618
捐赠科研通 2439625
什么是DOI,文献DOI怎么找? 1296912
科研通“疑难数据库(出版商)”最低求助积分说明 624808
版权声明 600771