清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Joint Prediction of Breast Cancer Histological Grade and Ki-67 Expression Level Based on DCE-MRI and DWI Radiomics

无线电技术 医学 磁共振成像 乳腺癌 计算机科学 放射科 人工智能 癌症 内科学
作者
Ming Fan,Wei Yuan,Wenrui Zhao,Maosheng Xu,Shiwei Wang,Xin Gao,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 1632-1642 被引量:84
标识
DOI:10.1109/jbhi.2019.2956351
摘要

Histologic grade and Ki-67 proliferation status are important clinical indictors for breast cancer prognosis and treatment. The purpose of this study is to improve prediction accuracy of these clinical indicators based on tumor radiomic analysis.We jointly predicted Ki-67 and tumor grade with a multitask learning framework by separately utilizing radiomics from tumor MRI series. Additionally, we showed how multitask learning models (MTLs) could be extended to combined radiomics from the MRI series for a better prediction based on the assumption that features from different sources of images share common patterns while providing complementary information. Tumor radiomic analysis was performed with morphological, statistical and textural features extracted on the DWI and dynamic contrast-enhanced MRI (DCE-MRI) series of the precontrast and subtraction images, respectively.Joint prediction of Ki-67 status and tumor grade on MR images using the MTL achieved performance improvements over that of single-task-based predictive models. Similarly, for the prediction tasks of Ki-67 and tumor grade, the MTL for combined precontrast and apparent diffusion coefficient (ADC) images achieved AUCs of 0.811 and 0.816, which were significantly better than that of the single-task- based model with p values of 0.005 and 0.017, respectively.Mapping MRI radiomics to two related clinical indicators improves prediction performance for both Ki-67 expression level and tumor grade.Joint prediction of indicators by multitask learning that combines correlations of MRI radiomics is important for optimal tumor therapy and treatment because clinical decisions are made by integrating multiple clinical indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
鸣笛应助CY采纳,获得30
24秒前
34秒前
34秒前
Rayoo发布了新的文献求助10
39秒前
DrLuffy完成签到 ,获得积分10
42秒前
852应助Rayoo采纳,获得10
49秒前
54秒前
liu完成签到,获得积分10
56秒前
sxx发布了新的文献求助10
58秒前
59秒前
瘦瘦发布了新的文献求助10
59秒前
眯眯眼的安雁完成签到 ,获得积分10
1分钟前
piaoaxi完成签到 ,获得积分10
1分钟前
wjx完成签到 ,获得积分10
1分钟前
louyu完成签到 ,获得积分0
1分钟前
1分钟前
甜美砖家完成签到 ,获得积分10
1分钟前
1分钟前
tan发布了新的文献求助20
1分钟前
1分钟前
荀万声完成签到,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
桐桐应助科研通管家采纳,获得10
1分钟前
风清扬应助科研通管家采纳,获得10
1分钟前
1分钟前
凉面完成签到 ,获得积分10
2分钟前
默默完成签到 ,获得积分10
2分钟前
妇产科医生完成签到 ,获得积分10
2分钟前
胡国伦完成签到 ,获得积分10
3分钟前
whuhustwit完成签到,获得积分10
3分钟前
xdd完成签到 ,获得积分10
3分钟前
3分钟前
sxx完成签到,获得积分10
3分钟前
3分钟前
cqmuluo发布了新的文献求助30
3分钟前
昔昔完成签到 ,获得积分10
3分钟前
所所应助科研通管家采纳,获得10
4分钟前
风清扬应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495262
关于积分的说明 11076012
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783275
邀请新用户注册赠送积分活动 867584
科研通“疑难数据库(出版商)”最低求助积分说明 800839