无线电技术
医学
磁共振成像
乳腺癌
计算机科学
放射科
人工智能
癌症
内科学
作者
Ming Fan,Wei Yuan,Wenrui Zhao,Maosheng Xu,Shiwei Wang,Xin Gao,Lihua Li
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2019-11-27
卷期号:24 (6): 1632-1642
被引量:83
标识
DOI:10.1109/jbhi.2019.2956351
摘要
Histologic grade and Ki-67 proliferation status are important clinical indictors for breast cancer prognosis and treatment. The purpose of this study is to improve prediction accuracy of these clinical indicators based on tumor radiomic analysis.We jointly predicted Ki-67 and tumor grade with a multitask learning framework by separately utilizing radiomics from tumor MRI series. Additionally, we showed how multitask learning models (MTLs) could be extended to combined radiomics from the MRI series for a better prediction based on the assumption that features from different sources of images share common patterns while providing complementary information. Tumor radiomic analysis was performed with morphological, statistical and textural features extracted on the DWI and dynamic contrast-enhanced MRI (DCE-MRI) series of the precontrast and subtraction images, respectively.Joint prediction of Ki-67 status and tumor grade on MR images using the MTL achieved performance improvements over that of single-task-based predictive models. Similarly, for the prediction tasks of Ki-67 and tumor grade, the MTL for combined precontrast and apparent diffusion coefficient (ADC) images achieved AUCs of 0.811 and 0.816, which were significantly better than that of the single-task- based model with p values of 0.005 and 0.017, respectively.Mapping MRI radiomics to two related clinical indicators improves prediction performance for both Ki-67 expression level and tumor grade.Joint prediction of indicators by multitask learning that combines correlations of MRI radiomics is important for optimal tumor therapy and treatment because clinical decisions are made by integrating multiple clinical indicators.
科研通智能强力驱动
Strongly Powered by AbleSci AI