医学
淋巴瘤
胃淋巴瘤
癌症
正电子发射断层摄影术
核医学
接收机工作特性
内科学
作者
Yan Sun,Chen Ji,Han Wang,Jian He,Song Liu,Yun Ge,Zhengyang Zhou
标识
DOI:10.1097/cm9.0000000000001206
摘要
Abstract Background: Texture analysis (TA) can quantify intra-tumor heterogeneity using standard medical images. The present study aimed to assess the application of positron emission tomography (PET) TA in the differential diagnosis of gastric cancer and gastric lymphoma. Methods: The pre-treatment PET images of 79 patients (45 gastric cancer, 34 gastric lymphoma) between January 2013 and February 2018 were retrospectively reviewed. Standard uptake values (SUVs), first-order texture features, and second-order texture features of the grey-level co-occurrence matrix (GLCM) were analyzed. The differences in features among different groups were analyzed by the two-way Mann-Whitney test, and receiver operating characteristic (ROC) analysis was used to estimate the diagnostic efficacy. Results: Inertia GLCM was significantly lower in gastric cancer than that in gastric lymphoma (4975.61 vs. 11,425.30, z = −3.238, P = 0.001), and it was found to be the most discriminating texture feature in differentiating gastric lymphoma and gastric cancer. The area under the curve (AUC) of inertia GLCM was higher than the AUCs of SUVmax and SUVmean (0.714 vs. 0.649 and 0.666, respectively). SUVmax and SUVmean were significantly lower in low-grade gastric lymphoma than those in high grade gastric lymphoma (3.30 vs. 11.80, 2.40 vs. 7.50, z = −2.792 and −3.007, P = 0.005 and 0.003, respectively). SUVs and first-order grey-level intensity features were not significantly different between low-grade gastric lymphoma and gastric cancer. Entropy GLCM12 was significantly lower in low-grade gastric lymphoma than that in gastric cancer (6.95 vs. 9.14, z = −2.542, P = 0.011) and had an AUC of 0.770 in the ROC analysis of differentiating low-grade gastric lymphoma and gastric cancer. Conclusions: Inertia GLCM and entropy GLCM were the most discriminating features in differentiating gastric lymphoma from gastric cancer and low-grade gastric lymphoma from gastric cancer, respectively. PET TA can improve the differential diagnosis of gastric neoplasms, especially in tumors with similar degrees of fluorodeoxyglucose uptake.
科研通智能强力驱动
Strongly Powered by AbleSci AI