Mixture multigroup factor analysis for unraveling factor loading noninvariance across many groups.

测量不变性 统计 成对比较 因子分析 公制(单位) 潜变量 聚类分析 数学 星团(航天器) 计量经济学 潜变量模型 价值(数学) 不对称 心理学 验证性因素分析 结构方程建模 计算机科学 物理 量子力学 经济 运营管理 程序设计语言
作者
Kim De Roover,Jeroen K. Vermunt,Eva Ceulemans
出处
期刊:Psychological Methods [American Psychological Association]
卷期号:27 (3): 281-306 被引量:4
标识
DOI:10.1037/met0000355
摘要

Psychological research often builds on between-group comparisons of (measurements of) latent variables; for instance, to evaluate cross-cultural differences in neuroticism or mindfulness. A critical assumption in such comparative research is that the same latent variable(s) are measured in exactly the same way across all groups (i.e., measurement invariance). Otherwise, one would be comparing apples and oranges. Nowadays, measurement invariance is often tested across a large number of groups by means of multigroup factor analysis. When the assumption is untenable, one may compare group-specific measurement models to pinpoint sources of noninvariance, but the number of pairwise comparisons exponentially increases with the number of groups. This makes it hard to unravel invariances from noninvariances and for which groups they apply, and it elevates the chances of falsely detecting noninvariance. An intuitive solution is clustering the groups into a few clusters based on the measurement model parameters. Therefore, we present mixture multigroup factor analysis (MMG-FA) which clusters the groups according to a specific level of measurement invariance. Specifically, in this article, clusters of groups with metric invariance (i.e., equal factor loadings) are obtained by making the loadings cluster-specific, whereas other parameters (i.e., intercepts, factor (co)variances, residual variances) are still allowed to differ between groups within a cluster. MMG-FA was found to perform well in an extensive simulation study, but a larger sample size within groups is required for recovering more subtle loading differences. Its empirical value is illustrated for data on the social value of emotions and data on emotional acculturation. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小慧儿发布了新的文献求助10
刚刚
ccerr完成签到,获得积分10
1秒前
快乐东蒽发布了新的文献求助10
2秒前
希望天下0贩的0应助WeiBao采纳,获得10
3秒前
3秒前
阳光安阳发布了新的文献求助10
5秒前
你猜发布了新的文献求助10
6秒前
6秒前
7秒前
mm发布了新的文献求助10
8秒前
8秒前
曲珍完成签到,获得积分10
8秒前
科研通AI2S应助yangderder采纳,获得10
9秒前
爱静静应助忆前尘采纳,获得10
9秒前
x123发布了新的文献求助10
10秒前
星辰大海应助沉淀采纳,获得10
10秒前
小慧儿完成签到,获得积分10
11秒前
河马完成签到,获得积分10
12秒前
12秒前
Hubery完成签到 ,获得积分10
12秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得10
13秒前
星希应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
搜集达人应助科研通管家采纳,获得10
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
99giddens应助科研通管家采纳,获得50
14秒前
充电宝应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得30
14秒前
无花果应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
CodeCraft应助龙潜筱采纳,获得10
15秒前
称心嫣娆完成签到 ,获得积分10
15秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760