An Intelligent Fault Diagnosis Method Based on Domain Adaptation and Its Application for Bearings Under Polytropic Working Conditions

多变过程 计算机科学 断层(地质) 特征(语言学) 特征提取 人工智能 算法 领域(数学分析) 模式识别(心理学) 数学 哲学 数学分析 地质学 物理 地震学 机械 语言学
作者
Zihao Lei,Guangrui Wen,Shuzhi Dong,Xin Huang,Haoxuan Zhou,Zhifen Zhang,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:49
标识
DOI:10.1109/tim.2020.3041105
摘要

In engineering practice, mechanical equipment is usually in polytropic working conditions, where the data distribution of training set and test set is inconsistent, resulting in insufficient generalization ability of the intelligent diagnosis model. Simultaneously, different tasks often need to be modeled separately. Domain adaptation, as one of the research contents of transfer learning, has certain advantages in solving the problem of inconsistent feature distribution. This article designs and establishes a domain adaptation framework based on multiscale mixed domain feature (DA-MMDF) for cross-domain intelligent fault diagnosis of rolling bearings under polytropic working conditions. The proposed method first uses the MMDF extractor to obtain features from the collected data, which constructs a complete feature space through variational mode decomposition (VMD) and mixed domain feature extraction to fully mine the state information and intrinsic attributes of the vibration signal. Second, the dimensionality reduction and optimization of features are achieved through extreme gradient promotion, and meaningful and sensitive features are selected according to the importance of features to eliminate redundant information. The optimized important features are combined with the manifold embedded distribution alignment method to realize the distribution alignment of data in different fields and cross-domain diagnosis. In order to verify the effectiveness of the proposed approach, the rolling bearing data sets gathered from the laboratories are employed and analyzed. The analysis result confirms that DA-MMDF is able to achieve effective transfer diagnosis between polytropic working conditions. Compared with traditional intelligent fault diagnosis methods and DA methods, the method proposed in this article achieved the state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
追寻的怜容完成签到,获得积分10
刚刚
maxinghrr完成签到,获得积分0
1秒前
shi hui应助宇老师采纳,获得10
2秒前
陈思完成签到,获得积分10
2秒前
SciGPT应助cy采纳,获得10
4秒前
王钰绮完成签到 ,获得积分10
6秒前
无情颖完成签到 ,获得积分10
6秒前
宁静致远完成签到,获得积分10
8秒前
顾矜应助活泼红牛采纳,获得10
8秒前
桐桐应助科研通管家采纳,获得10
9秒前
风吹麦田应助科研通管家采纳,获得30
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
脑洞疼应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
那时花开应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
李爱国应助科研通管家采纳,获得10
9秒前
wy.he应助科研通管家采纳,获得20
9秒前
SciGPT应助科研通管家采纳,获得10
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
标致的方盒完成签到,获得积分10
10秒前
蜘猪侠zx应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
我是老大应助科研通管家采纳,获得10
10秒前
那时花开应助科研通管家采纳,获得10
10秒前
大力契应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
10秒前
桐桐应助科研通管家采纳,获得30
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378758
求助须知:如何正确求助?哪些是违规求助? 4503204
关于积分的说明 14015274
捐赠科研通 4411911
什么是DOI,文献DOI怎么找? 2423541
邀请新用户注册赠送积分活动 1416486
关于科研通互助平台的介绍 1393925