An Intelligent Fault Diagnosis Method Based on Domain Adaptation and Its Application for Bearings Under Polytropic Working Conditions

多变过程 计算机科学 断层(地质) 特征(语言学) 特征提取 人工智能 算法 领域(数学分析) 模式识别(心理学) 数学 哲学 数学分析 地质学 物理 地震学 机械 语言学
作者
Zihao Lei,Guangrui Wen,Shuzhi Dong,Xin Huang,Haoxuan Zhou,Zhifen Zhang,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:49
标识
DOI:10.1109/tim.2020.3041105
摘要

In engineering practice, mechanical equipment is usually in polytropic working conditions, where the data distribution of training set and test set is inconsistent, resulting in insufficient generalization ability of the intelligent diagnosis model. Simultaneously, different tasks often need to be modeled separately. Domain adaptation, as one of the research contents of transfer learning, has certain advantages in solving the problem of inconsistent feature distribution. This article designs and establishes a domain adaptation framework based on multiscale mixed domain feature (DA-MMDF) for cross-domain intelligent fault diagnosis of rolling bearings under polytropic working conditions. The proposed method first uses the MMDF extractor to obtain features from the collected data, which constructs a complete feature space through variational mode decomposition (VMD) and mixed domain feature extraction to fully mine the state information and intrinsic attributes of the vibration signal. Second, the dimensionality reduction and optimization of features are achieved through extreme gradient promotion, and meaningful and sensitive features are selected according to the importance of features to eliminate redundant information. The optimized important features are combined with the manifold embedded distribution alignment method to realize the distribution alignment of data in different fields and cross-domain diagnosis. In order to verify the effectiveness of the proposed approach, the rolling bearing data sets gathered from the laboratories are employed and analyzed. The analysis result confirms that DA-MMDF is able to achieve effective transfer diagnosis between polytropic working conditions. Compared with traditional intelligent fault diagnosis methods and DA methods, the method proposed in this article achieved the state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可夫司机完成签到 ,获得积分10
1秒前
John完成签到,获得积分10
5秒前
jlj完成签到,获得积分10
9秒前
tuanhust完成签到,获得积分10
12秒前
吹泡泡的红豆完成签到 ,获得积分10
13秒前
哈哈哈哈哈哈哈完成签到 ,获得积分10
15秒前
20秒前
肥羊七号完成签到 ,获得积分10
30秒前
btcat完成签到,获得积分10
30秒前
32秒前
genomed完成签到,获得积分0
39秒前
胖胖完成签到 ,获得积分10
44秒前
45秒前
gangxiaxuan给gangxiaxuan的求助进行了留言
48秒前
Cold-Drink-Shop完成签到,获得积分10
55秒前
唯有一个心完成签到 ,获得积分10
58秒前
58秒前
1分钟前
1分钟前
森淼完成签到 ,获得积分10
1分钟前
黄道婆完成签到 ,获得积分10
1分钟前
鲁滨逊完成签到 ,获得积分10
1分钟前
gangxiaxuan发布了新的文献求助20
1分钟前
活力的妙芙完成签到,获得积分10
1分钟前
缓慢雅青完成签到 ,获得积分10
1分钟前
莎莎完成签到 ,获得积分10
1分钟前
小文子完成签到,获得积分10
1分钟前
111完成签到 ,获得积分10
1分钟前
QY完成签到 ,获得积分10
1分钟前
ni完成签到 ,获得积分10
1分钟前
凉面完成签到 ,获得积分10
1分钟前
等待的时光完成签到,获得积分10
1分钟前
诚心代芙完成签到 ,获得积分10
1分钟前
chenyiyi完成签到 ,获得积分10
1分钟前
令狐新竹完成签到 ,获得积分10
1分钟前
酷酷映冬完成签到 ,获得积分10
1分钟前
Lz555完成签到 ,获得积分10
1分钟前
zhilianghui0807完成签到 ,获得积分10
1分钟前
mrwang完成签到 ,获得积分10
1分钟前
白菜完成签到 ,获得积分10
1分钟前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167235
求助须知:如何正确求助?哪些是违规求助? 2818702
关于积分的说明 7921990
捐赠科研通 2478475
什么是DOI,文献DOI怎么找? 1320350
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443