An Intelligent Fault Diagnosis Method Based on Domain Adaptation and Its Application for Bearings Under Polytropic Working Conditions

多变过程 计算机科学 断层(地质) 特征(语言学) 特征提取 人工智能 算法 领域(数学分析) 模式识别(心理学) 数学 哲学 数学分析 地质学 物理 地震学 机械 语言学
作者
Zihao Lei,Guangrui Wen,Shuzhi Dong,Xin Huang,Haoxuan Zhou,Zhifen Zhang,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:49
标识
DOI:10.1109/tim.2020.3041105
摘要

In engineering practice, mechanical equipment is usually in polytropic working conditions, where the data distribution of training set and test set is inconsistent, resulting in insufficient generalization ability of the intelligent diagnosis model. Simultaneously, different tasks often need to be modeled separately. Domain adaptation, as one of the research contents of transfer learning, has certain advantages in solving the problem of inconsistent feature distribution. This article designs and establishes a domain adaptation framework based on multiscale mixed domain feature (DA-MMDF) for cross-domain intelligent fault diagnosis of rolling bearings under polytropic working conditions. The proposed method first uses the MMDF extractor to obtain features from the collected data, which constructs a complete feature space through variational mode decomposition (VMD) and mixed domain feature extraction to fully mine the state information and intrinsic attributes of the vibration signal. Second, the dimensionality reduction and optimization of features are achieved through extreme gradient promotion, and meaningful and sensitive features are selected according to the importance of features to eliminate redundant information. The optimized important features are combined with the manifold embedded distribution alignment method to realize the distribution alignment of data in different fields and cross-domain diagnosis. In order to verify the effectiveness of the proposed approach, the rolling bearing data sets gathered from the laboratories are employed and analyzed. The analysis result confirms that DA-MMDF is able to achieve effective transfer diagnosis between polytropic working conditions. Compared with traditional intelligent fault diagnosis methods and DA methods, the method proposed in this article achieved the state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气的乘云完成签到,获得积分10
刚刚
吃点红糖馒头完成签到,获得积分10
1秒前
良月二十一完成签到 ,获得积分10
1秒前
斯文败类应助听粥采纳,获得10
2秒前
可爱的函函应助strings采纳,获得10
2秒前
2秒前
仚屳完成签到,获得积分10
2秒前
Naixi完成签到,获得积分10
2秒前
今后应助HU采纳,获得10
2秒前
su完成签到 ,获得积分10
4秒前
平淡的依白完成签到,获得积分20
4秒前
xinchengzhu关注了科研通微信公众号
4秒前
爱静静应助tao采纳,获得10
5秒前
iNk应助Rebekah采纳,获得10
5秒前
HopeStar完成签到,获得积分10
6秒前
树叶有专攻完成签到,获得积分10
6秒前
6秒前
田様应助Mia采纳,获得20
6秒前
所所应助吃点红糖馒头采纳,获得10
6秒前
今后应助PSCs采纳,获得10
6秒前
7秒前
duguqiubai4发布了新的文献求助10
7秒前
独特的沛凝完成签到,获得积分10
9秒前
思源应助淇淇怪怪采纳,获得10
9秒前
领导范儿应助徐慕源采纳,获得10
9秒前
听粥完成签到,获得积分10
10秒前
高高迎蓉完成签到,获得积分10
10秒前
豆花完成签到,获得积分10
10秒前
SYLH应助风趣的无剑采纳,获得10
10秒前
悲伤水凝胶完成签到,获得积分10
10秒前
鲸鱼完成签到,获得积分10
12秒前
huangqinxue完成签到,获得积分10
12秒前
13秒前
13秒前
Tina完成签到,获得积分10
13秒前
电催化皮皮完成签到,获得积分10
13秒前
大模型应助阿蒙采纳,获得10
14秒前
duguqiubai4完成签到,获得积分10
14秒前
15秒前
meta完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678