An Intelligent Fault Diagnosis Method Based on Domain Adaptation and Its Application for Bearings Under Polytropic Working Conditions

多变过程 计算机科学 断层(地质) 特征(语言学) 特征提取 人工智能 算法 领域(数学分析) 模式识别(心理学) 数学 哲学 数学分析 地质学 物理 地震学 机械 语言学
作者
Zihao Lei,Guangrui Wen,Shuzhi Dong,Xin Huang,Haoxuan Zhou,Zhifen Zhang,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:49
标识
DOI:10.1109/tim.2020.3041105
摘要

In engineering practice, mechanical equipment is usually in polytropic working conditions, where the data distribution of training set and test set is inconsistent, resulting in insufficient generalization ability of the intelligent diagnosis model. Simultaneously, different tasks often need to be modeled separately. Domain adaptation, as one of the research contents of transfer learning, has certain advantages in solving the problem of inconsistent feature distribution. This article designs and establishes a domain adaptation framework based on multiscale mixed domain feature (DA-MMDF) for cross-domain intelligent fault diagnosis of rolling bearings under polytropic working conditions. The proposed method first uses the MMDF extractor to obtain features from the collected data, which constructs a complete feature space through variational mode decomposition (VMD) and mixed domain feature extraction to fully mine the state information and intrinsic attributes of the vibration signal. Second, the dimensionality reduction and optimization of features are achieved through extreme gradient promotion, and meaningful and sensitive features are selected according to the importance of features to eliminate redundant information. The optimized important features are combined with the manifold embedded distribution alignment method to realize the distribution alignment of data in different fields and cross-domain diagnosis. In order to verify the effectiveness of the proposed approach, the rolling bearing data sets gathered from the laboratories are employed and analyzed. The analysis result confirms that DA-MMDF is able to achieve effective transfer diagnosis between polytropic working conditions. Compared with traditional intelligent fault diagnosis methods and DA methods, the method proposed in this article achieved the state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
在水一方应助迷路的忆之采纳,获得10
2秒前
Dead Cells完成签到,获得积分10
2秒前
着急的柔完成签到,获得积分10
2秒前
有魅力的小蜜蜂完成签到,获得积分10
3秒前
慕青应助lizhaonian采纳,获得10
3秒前
耍酷的傲霜完成签到,获得积分10
4秒前
善学以致用应助jjsun采纳,获得10
5秒前
EED应助文件撤销了驳回
5秒前
小蘑菇应助年轻的烨华采纳,获得10
6秒前
6秒前
zzz发布了新的文献求助10
7秒前
研友_Zzrx6Z完成签到,获得积分10
8秒前
8秒前
10秒前
10秒前
汉堡包应助NOTHING采纳,获得10
10秒前
SYLH应助科研通管家采纳,获得50
10秒前
quhayley应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
坦率的匪应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得50
11秒前
orixero应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得50
11秒前
思源应助科研通管家采纳,获得10
11秒前
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
czh应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
12秒前
SYLH应助科研通管家采纳,获得50
12秒前
大模型应助科研通管家采纳,获得10
12秒前
12秒前
斯文败类应助Keyl采纳,获得10
12秒前
褪黑素应助科研通管家采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988732
求助须知:如何正确求助?哪些是违规求助? 3531027
关于积分的说明 11252281
捐赠科研通 3269732
什么是DOI,文献DOI怎么找? 1804764
邀请新用户注册赠送积分活动 881869
科研通“疑难数据库(出版商)”最低求助积分说明 809021