亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Intelligent Fault Diagnosis Method Based on Domain Adaptation and Its Application for Bearings Under Polytropic Working Conditions

多变过程 计算机科学 断层(地质) 特征(语言学) 特征提取 人工智能 算法 领域(数学分析) 模式识别(心理学) 数学 哲学 数学分析 地质学 物理 地震学 机械 语言学
作者
Zihao Lei,Guangrui Wen,Shuzhi Dong,Xin Huang,Haoxuan Zhou,Zhifen Zhang,Xuefeng Chen
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-14 被引量:49
标识
DOI:10.1109/tim.2020.3041105
摘要

In engineering practice, mechanical equipment is usually in polytropic working conditions, where the data distribution of training set and test set is inconsistent, resulting in insufficient generalization ability of the intelligent diagnosis model. Simultaneously, different tasks often need to be modeled separately. Domain adaptation, as one of the research contents of transfer learning, has certain advantages in solving the problem of inconsistent feature distribution. This article designs and establishes a domain adaptation framework based on multiscale mixed domain feature (DA-MMDF) for cross-domain intelligent fault diagnosis of rolling bearings under polytropic working conditions. The proposed method first uses the MMDF extractor to obtain features from the collected data, which constructs a complete feature space through variational mode decomposition (VMD) and mixed domain feature extraction to fully mine the state information and intrinsic attributes of the vibration signal. Second, the dimensionality reduction and optimization of features are achieved through extreme gradient promotion, and meaningful and sensitive features are selected according to the importance of features to eliminate redundant information. The optimized important features are combined with the manifold embedded distribution alignment method to realize the distribution alignment of data in different fields and cross-domain diagnosis. In order to verify the effectiveness of the proposed approach, the rolling bearing data sets gathered from the laboratories are employed and analyzed. The analysis result confirms that DA-MMDF is able to achieve effective transfer diagnosis between polytropic working conditions. Compared with traditional intelligent fault diagnosis methods and DA methods, the method proposed in this article achieved the state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ijiahe发布了新的文献求助30
2秒前
morena应助科研通管家采纳,获得20
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
时光完成签到,获得积分20
11秒前
orixero应助时光采纳,获得15
20秒前
科研通AI2S应助无语采纳,获得30
22秒前
Kiki完成签到 ,获得积分10
24秒前
36秒前
38秒前
苏震坤发布了新的文献求助10
39秒前
Alberta完成签到,获得积分10
39秒前
49秒前
longlingsheng完成签到 ,获得积分20
52秒前
子阅发布了新的文献求助10
53秒前
1分钟前
TheGan发布了新的文献求助20
1分钟前
ijiahe完成签到,获得积分10
1分钟前
段鸿涛完成签到,获得积分10
1分钟前
刀特左完成签到,获得积分10
1分钟前
小蘑菇应助多情捕采纳,获得10
2分钟前
乐乐应助科研通管家采纳,获得30
2分钟前
qyt完成签到,获得积分20
2分钟前
qyt发布了新的文献求助10
2分钟前
英俊的铭应助qyt采纳,获得10
2分钟前
搜集达人应助爱听歌笑寒采纳,获得10
2分钟前
2分钟前
2分钟前
TheGan发布了新的文献求助10
2分钟前
2分钟前
3分钟前
3分钟前
362394935发布了新的文献求助10
3分钟前
无语发布了新的文献求助30
3分钟前
小二郎应助爱听歌笑寒采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
Oli完成签到,获得积分10
3分钟前
3分钟前
乐乐应助MMMMM采纳,获得30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900510
求助须知:如何正确求助?哪些是违规求助? 4180402
关于积分的说明 12976772
捐赠科研通 3945000
什么是DOI,文献DOI怎么找? 2163892
邀请新用户注册赠送积分活动 1182204
关于科研通互助平台的介绍 1088266