亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of transition from mild cognitive impairment to Alzheimer's disease based on a logistic regression–artificial neural network–decision tree model

逻辑回归 接收机工作特性 医学 痴呆 回归分析 决策树 决策树模型 人工神经网络 统计 心理学 内科学 疾病 人工智能 计算机科学 数学
作者
Jie Kuang,Pin Zhang,TianPan Cai,Zixuan Zou,Li Li,Nan Wang,Lei Wu
出处
期刊:Geriatrics & Gerontology International [Wiley]
卷期号:21 (1): 43-47 被引量:29
标识
DOI:10.1111/ggi.14097
摘要

Aim To develop a logistic regression model, artificial neural network (ANN) model and decision tree (DT) model for the progression of mild cognitive impairment (MCI) to Alzheimer's disease (AD) to compare the performance of the three models. Methods A total of 425 patients with MCI were screened from the original cohort. The actual follow up included 361 patients, with AD as the outcome variable. Three kinds of prediction models were developed: a logistic regression model, ANN model and DT model. The performance of all three models was measured with accuracy, sensitivity, positive predictive value and area under the receiver operating characteristic curve. Results A total of 121 patients with MCI developed AD, and the average conversion rate was 9.49% per year. The ANN model had higher accuracy (89.52 ± 0.36%), area under the receiver operating characteristic curve (92.08 ± 0.12), sensitivity (82.11 ± 0.42%) and positive predictive value (75.26 ± 0.86%) than the other two models. The first five important predictors of the ANN model were, in order, ADL score, age, urine AD‐associated neuronal thread protein, alcohol consumption and smoking. For the DT model, they were age, activities of daily living score, family history of dementia, urine AD‐associated neuronal thread protein and alcohol consumption. For the logistic regression model, they were age, sex, activities of daily living score, alcohol consumption and smoking. Conclusion The logistic regression, ANN and DT models performed well at predicting the transition from MCI to AD with ideal stability. However, the ANN model had the best predictive value. Increased age, activities of daily living score, urine AD‐associated neuronal thread protein, alcohol consumption, smoking and sex were important factors. Geriatr Gerontol Int 2021; 21: 43–47 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
yu发布了新的文献求助30
20秒前
25秒前
大鱼发布了新的文献求助20
37秒前
xiawanren00完成签到,获得积分10
46秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
囚徒发布了新的文献求助10
1分钟前
digger2023完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
852应助夏末采纳,获得10
3分钟前
3分钟前
席江海完成签到,获得积分10
3分钟前
谢小盟完成签到 ,获得积分10
3分钟前
3分钟前
爱科研的小周完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
夏末发布了新的文献求助10
4分钟前
夏末完成签到,获得积分10
4分钟前
4分钟前
4分钟前
jwq发布了新的文献求助10
5分钟前
jwq完成签到,获得积分10
5分钟前
efren1806完成签到,获得积分10
5分钟前
6分钟前
陈陈发布了新的文献求助10
6分钟前
赘婿应助陈陈采纳,获得10
6分钟前
完美世界应助cacaldon采纳,获得10
6分钟前
CipherSage应助科研通管家采纳,获得10
7分钟前
爆米花应助科研通管家采纳,获得10
7分钟前
BCKT完成签到,获得积分10
7分钟前
7分钟前
姚老表完成签到,获得积分10
8分钟前
8分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
小马甲应助科研通管家采纳,获得10
9分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388430
求助须知:如何正确求助?哪些是违规求助? 3000782
关于积分的说明 8793674
捐赠科研通 2686885
什么是DOI,文献DOI怎么找? 1471938
科研通“疑难数据库(出版商)”最低求助积分说明 680665
邀请新用户注册赠送积分活动 673313