Convolutional Reconstruction-to-Sequence for Video Captioning

编码器 序列(生物学)
作者
Aming Wu,Yahong Han,Yi Yang,Qinghua Hu,Fei Wu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 4299-4308 被引量:6
标识
DOI:10.1109/tcsvt.2019.2956593
摘要

Recent advances towards video captioning mainly follow an encoder-decoder (sequence-to-sequence) framework and generate captions via a recurrent neural network (RNN). However, employing RNN as the decoder (generator) is prone to diluting long-term information, which weakens its ability to capture long-term dependencies. Recently, some work has demonstrated that the convolutional neural network (CNN) could be used to model sequential information. Though strengths in representation ability and computation efficiency, CNN has not been well exploited in video captioning. The reason partially comes from the difficulty of modeling multi-modal sequence with CNN. In this paper, we devise a novel CNN-based encoder-decoder framework for video captioning. Particularly, we first append inter-frame differences to each CNN-extracted frame feature to get a more discriminative representation; then with that as the input, we encode each frame to be a more compact feature by a one-layer convolutional mapping, which could be taken as a reconstruction network. In the decoding stage, we first fuse visual and lexical feature; then we stack multiple dilated convolutional layers to form a hierarchical decoder. As long-term dependencies could be captured by a shorter path along the hierarchical structure, the decoder could alleviate the loss of long-term information. Experiments on two benchmark datasets show that our method could obtain state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
美丽完成签到,获得积分10
2秒前
深情安青应助乐观黑米采纳,获得10
2秒前
大模型应助清爽鸡翅采纳,获得10
3秒前
3秒前
3秒前
樊先生发布了新的文献求助10
4秒前
彭于晏应助阳佟问寒采纳,获得10
4秒前
xxxxx完成签到,获得积分10
4秒前
星光不负赶路人完成签到,获得积分10
4秒前
5秒前
5秒前
徐慕源完成签到,获得积分10
6秒前
7秒前
星辰完成签到,获得积分10
7秒前
7秒前
小鱼发布了新的文献求助10
8秒前
8秒前
8秒前
w9412完成签到,获得积分10
9秒前
9秒前
firefly完成签到 ,获得积分10
10秒前
spz150发布了新的文献求助10
10秒前
10秒前
冷静太君完成签到,获得积分10
11秒前
aqw完成签到,获得积分20
11秒前
考研外星人完成签到,获得积分20
12秒前
快乐科研发布了新的文献求助10
12秒前
asdfqwer发布了新的文献求助10
12秒前
爱科研的的小禾完成签到 ,获得积分10
12秒前
华仔应助11111112222采纳,获得10
12秒前
崔柯梦发布了新的文献求助10
12秒前
太上老君发布了新的文献求助10
12秒前
shannonxiong发布了新的文献求助10
12秒前
during完成签到,获得积分10
13秒前
13秒前
angelinekitty完成签到,获得积分10
14秒前
话家完成签到,获得积分10
14秒前
丸子完成签到,获得积分10
14秒前
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958780
求助须知:如何正确求助?哪些是违规求助? 3504977
关于积分的说明 11121403
捐赠科研通 3236362
什么是DOI,文献DOI怎么找? 1788752
邀请新用户注册赠送积分活动 871360
科研通“疑难数据库(出版商)”最低求助积分说明 802707