亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Reconstruction-to-Sequence for Video Captioning

编码器 序列(生物学)
作者
Aming Wu,Yahong Han,Yi Yang,Qinghua Hu,Fei Wu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 4299-4308 被引量:6
标识
DOI:10.1109/tcsvt.2019.2956593
摘要

Recent advances towards video captioning mainly follow an encoder-decoder (sequence-to-sequence) framework and generate captions via a recurrent neural network (RNN). However, employing RNN as the decoder (generator) is prone to diluting long-term information, which weakens its ability to capture long-term dependencies. Recently, some work has demonstrated that the convolutional neural network (CNN) could be used to model sequential information. Though strengths in representation ability and computation efficiency, CNN has not been well exploited in video captioning. The reason partially comes from the difficulty of modeling multi-modal sequence with CNN. In this paper, we devise a novel CNN-based encoder-decoder framework for video captioning. Particularly, we first append inter-frame differences to each CNN-extracted frame feature to get a more discriminative representation; then with that as the input, we encode each frame to be a more compact feature by a one-layer convolutional mapping, which could be taken as a reconstruction network. In the decoding stage, we first fuse visual and lexical feature; then we stack multiple dilated convolutional layers to form a hierarchical decoder. As long-term dependencies could be captured by a shorter path along the hierarchical structure, the decoder could alleviate the loss of long-term information. Experiments on two benchmark datasets show that our method could obtain state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
独特的不尤完成签到,获得积分10
4秒前
4秒前
在水一方应助yolo采纳,获得10
5秒前
oo发布了新的文献求助10
9秒前
11秒前
11秒前
gt完成签到 ,获得积分10
12秒前
Hcc完成签到 ,获得积分10
15秒前
YingxueRen完成签到,获得积分10
16秒前
shareef发布了新的文献求助10
16秒前
重要青柏发布了新的文献求助10
21秒前
29秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
斯文败类应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得10
30秒前
34秒前
auraro完成签到 ,获得积分10
35秒前
G1完成签到,获得积分10
36秒前
烟花应助Re采纳,获得10
38秒前
Ava应助Re采纳,获得10
38秒前
G1发布了新的文献求助10
39秒前
大方小蘑菇完成签到,获得积分10
42秒前
科目三应助默默采纳,获得10
44秒前
寂川发布了新的文献求助10
48秒前
53秒前
包容新蕾完成签到 ,获得积分10
57秒前
贺临完成签到 ,获得积分10
57秒前
默默发布了新的文献求助10
58秒前
1分钟前
陈征完成签到,获得积分10
1分钟前
科研通AI6.1应助重要青柏采纳,获得10
1分钟前
陈征发布了新的文献求助10
1分钟前
1分钟前
芷兰丁香完成签到,获得积分10
1分钟前
千寻完成签到,获得积分0
1分钟前
yolo发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739102
求助须知:如何正确求助?哪些是违规求助? 5383779
关于积分的说明 15339426
捐赠科研通 4881827
什么是DOI,文献DOI怎么找? 2623950
邀请新用户注册赠送积分活动 1572640
关于科研通互助平台的介绍 1529390