亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional Reconstruction-to-Sequence for Video Captioning

编码器 序列(生物学)
作者
Aming Wu,Yahong Han,Yi Yang,Qinghua Hu,Fei Wu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:30 (11): 4299-4308 被引量:6
标识
DOI:10.1109/tcsvt.2019.2956593
摘要

Recent advances towards video captioning mainly follow an encoder-decoder (sequence-to-sequence) framework and generate captions via a recurrent neural network (RNN). However, employing RNN as the decoder (generator) is prone to diluting long-term information, which weakens its ability to capture long-term dependencies. Recently, some work has demonstrated that the convolutional neural network (CNN) could be used to model sequential information. Though strengths in representation ability and computation efficiency, CNN has not been well exploited in video captioning. The reason partially comes from the difficulty of modeling multi-modal sequence with CNN. In this paper, we devise a novel CNN-based encoder-decoder framework for video captioning. Particularly, we first append inter-frame differences to each CNN-extracted frame feature to get a more discriminative representation; then with that as the input, we encode each frame to be a more compact feature by a one-layer convolutional mapping, which could be taken as a reconstruction network. In the decoding stage, we first fuse visual and lexical feature; then we stack multiple dilated convolutional layers to form a hierarchical decoder. As long-term dependencies could be captured by a shorter path along the hierarchical structure, the decoder could alleviate the loss of long-term information. Experiments on two benchmark datasets show that our method could obtain state-of-the-art performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
14秒前
15秒前
17秒前
19秒前
46秒前
和怡发布了新的文献求助10
52秒前
54秒前
1分钟前
1分钟前
完美的博发布了新的文献求助10
1分钟前
Ocean发布了新的文献求助10
1分钟前
Ocean完成签到,获得积分10
1分钟前
1分钟前
Owen应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
nicaicai完成签到,获得积分10
2分钟前
2分钟前
TXZ06完成签到,获得积分10
2分钟前
2分钟前
2分钟前
火星上映易完成签到,获得积分10
2分钟前
2分钟前
3分钟前
米奇妙妙屋完成签到,获得积分10
3分钟前
3分钟前
358489228完成签到,获得积分10
3分钟前
朴素豪发布了新的文献求助10
3分钟前
小伙子应助科研通管家采纳,获得30
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739561
求助须知:如何正确求助?哪些是违规求助? 5387511
关于积分的说明 15339800
捐赠科研通 4882032
什么是DOI,文献DOI怎么找? 2624106
邀请新用户注册赠送积分活动 1572804
关于科研通互助平台的介绍 1529599