亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of Improved Genetic Algorithm in Function Optimization

渡线 元优化 遗传算法 计算机科学 数学优化 遗传算子 基于群体的增量学习 文化算法 选择(遗传算法) 算法 突变 人口 适应度函数 趋同(经济学) 最优化问题 操作员(生物学) 收敛速度 数学 钥匙(锁) 人工智能 人口学 社会学 抑制因子 经济 计算机安全 经济增长 化学 基因 转录因子 生物化学
作者
Chun Yuan,Meixuan Li,Wei Liu
出处
期刊:Journal of Information Science and Engineering [Institute of Information Science]
卷期号:35 (6): 1299-1309 被引量:1
标识
DOI:10.6688/jise.201911_35(6).0008
摘要

In recent years, due to the great potential of genetic algorithms to solve complex optimization problems, it has attracted wide attention. But the traditional genetic algorithm still has some shortcomings. In this paper, a new adaptive genetic algorithm (NAGA) is proposed to overcome the disadvantages of the traditional genetic algorithm (GA). GA algorithm is easy to fall into the local optimal solution and converges slowly in the process of function optimization. NAGA algorithm takes into accounts the diversity of the population fitness, the crossover probability and mutation probability of the nonlinear adaptive genetic algorithm. In order to speed up the optimization efficiency, the introduced selection operator is combined with the optimal and worst preserving strategies in the selection operator. And in order to keep the population size constant during the genetic operation, the strategy of preserving the parents is proposed. Compared with the classical genetic algorithm GA and IAGA, the improved genetic algorithm is easier to get rid of the extremum and find a better solution in solving the multi-peak function problem, and the convergence rate is faster. Therefore, the improved genetic algorithm is beneficial for function optimization and other optimization problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
kong完成签到,获得积分10
6秒前
6秒前
10秒前
12秒前
12秒前
CodeCraft应助zzzz采纳,获得10
14秒前
H4ppy_n3w_y34r完成签到,获得积分10
14秒前
15秒前
Ghiocel完成签到,获得积分10
16秒前
18秒前
llpj完成签到,获得积分10
19秒前
19秒前
21秒前
22秒前
自信寻真发布了新的文献求助20
22秒前
甜蜜舞蹈完成签到 ,获得积分10
23秒前
zzzz发布了新的文献求助10
26秒前
蛋仔发布了新的文献求助30
29秒前
wwf发布了新的文献求助10
29秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
科研通AI6应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
lin完成签到,获得积分10
34秒前
36秒前
41秒前
wwf完成签到,获得积分20
46秒前
48秒前
51秒前
Skymi发布了新的文献求助10
52秒前
52秒前
Jasper应助GDL采纳,获得10
52秒前
热情的c99发布了新的文献求助10
57秒前
57秒前
英姑应助cxin采纳,获得10
58秒前
pzz发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5714225
求助须知:如何正确求助?哪些是违规求助? 5221821
关于积分的说明 15272955
捐赠科研通 4865714
什么是DOI,文献DOI怎么找? 2612313
邀请新用户注册赠送积分活动 1562449
关于科研通互助平台的介绍 1519671