Exploration of subsequent yield surfaces through unit cell simulations

屈服面 材料科学 应力空间 产量(工程) 可塑性 各向同性 机械 压扁 剪切(地质) 空隙(复合材料) 单剪 几何学 剪应力 复合材料 结构工程 数学 有限元法 光学 物理 工程类 本构方程
作者
Mayank Chouksey,S. Basu
出处
期刊:International Journal of Solids and Structures [Elsevier]
卷期号:219-220: 11-22 被引量:3
标识
DOI:10.1016/j.ijsolstr.2021.02.004
摘要

Subsequent yield surfaces of ductile solids, pre-strained in shear and/or tension, exhibit various characteristic features that depend on the proof strain used to detect yield. These features include kinematic hardening when the proof strain denoting yield is low, isotropic hardening when it is high, formation of a ‘nose’ in the loading direction and flattening of the rear part of the yield surface. With the aid of a computational homogenisation scheme that allows application of arbitrary macro stress or macro deformation gradient to a unit cell, we show that essential features of the subsequent yield surfaces owe their origin to the extent of plasticity accumulated within the unit cell. For instance, a simple unit cell containing a spherical void, where the void serves to create a heterogenous distribution of plastic strain, suffices to computationally reproduce the experimentally observed features. Moreover, in contrast to experiments which generally allow plotting of the yield surface in a normal stress – shear stress plane, the computational scheme allows fuller exploration of the subsequent macro yield surface in the macro stress space. We find that what seems to be a translation and distortion of the yield surface in experiments, is actually most pronounced near some critical octahedral planes characterised by levels of triaxiality induced by the pre-straining process. The evolution of the yield surface in regions where the triaxiality is higher is considerably different. Moreover, as homogeneous yielding is approached with loading of the unit cell, the material seems to forget the nature of the pre-straining process and undergoes isotropic hardening.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助bdvdsrwteges采纳,获得10
1秒前
木木雨发布了新的文献求助10
2秒前
鬲木发布了新的文献求助10
2秒前
mao12wang发布了新的文献求助10
2秒前
L坨坨完成签到 ,获得积分10
2秒前
耿强发布了新的文献求助10
2秒前
jmy发布了新的文献求助10
3秒前
科研小黑子完成签到,获得积分20
3秒前
3秒前
苏尔完成签到,获得积分10
3秒前
3秒前
浅墨完成签到 ,获得积分10
3秒前
mony完成签到,获得积分10
3秒前
4秒前
4秒前
huizi发布了新的文献求助10
4秒前
5秒前
菠萝冰棒发布了新的文献求助10
5秒前
5秒前
请叫我风吹麦浪完成签到,获得积分0
5秒前
清爽雪枫发布了新的文献求助10
6秒前
6秒前
6秒前
李健应助斜杠武采纳,获得10
7秒前
fengxj完成签到 ,获得积分10
7秒前
7秒前
7秒前
七七给七七的求助进行了留言
7秒前
8秒前
8秒前
Hello应助冷静的平安采纳,获得10
8秒前
FKVB_完成签到 ,获得积分10
9秒前
饼饼完成签到,获得积分10
9秒前
天天快乐应助木木采纳,获得10
9秒前
艺玲发布了新的文献求助10
9秒前
大气飞丹发布了新的文献求助10
9秒前
丫丫完成签到,获得积分10
10秒前
科研通AI2S应助觅桃乌龙采纳,获得10
10秒前
耿强完成签到,获得积分10
10秒前
wanci应助dd采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759