Research on global optimization method for multiple AGV collision avoidance in hybrid path

粒子群优化 避碰 运动规划 计算机科学 路径(计算) 碰撞 过程(计算) 工程类 数学优化 算法 模拟 机器人 人工智能 数学 操作系统 程序设计语言 计算机安全
作者
Xiaohua Cao,Meng Zhu
出处
期刊:Optimal Control Applications & Methods [Wiley]
卷期号:42 (4): 1064-1080 被引量:10
标识
DOI:10.1002/oca.2716
摘要

Abstract Due to the increasing number of automated guided vehicles (AGVs) in the multi‐AGV system and the limitation of working environment, path conflicts often occur in the working process of AGVs, which affects the working efficiency of the multi‐AGV system. Thus, a optimization method by arranging the AGVs' traffic sequence is proposed in this paper. First, an AGV working map is reconstructed with graph theory, and then the corresponding collision avoidance rules are formulated for different types of conflicts. In multi‐AGV system, each collision avoidance decision has an impact on the efficiency of the system, so it is crucial to adopt appropriate decisions. To optimize the decisions, the system fitness of different collision avoidance decisions are calculated based on the global state of the system, and the particle swarm optimization (PSO) algorithm is used to optimize the decisions. Furthermore, the PSO algorithm is improved by planning the direction of particle motion in the solution space and introducing mutation operation, so as to improve the search ability of the particle in the solution space. To verify the feasibility and effectiveness of the improved particle swarm optimization (IPSO) algorithm, an experiment system is built based on. NET platform. Results show that the IPSO algorithm than the traditional algorithms experimental performs better. The IPSO algorithm can effectively reduce congestion caused by path conflict and enhance the efficiency of the multi‐AGV system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666999发布了新的文献求助10
1秒前
荷兰香猪完成签到,获得积分10
2秒前
2秒前
2秒前
小洛发布了新的文献求助10
4秒前
香蕉觅云应助穆子硕采纳,获得10
5秒前
欧阳大娘完成签到,获得积分10
7秒前
海洋发布了新的文献求助10
8秒前
8秒前
ibigbird发布了新的文献求助10
8秒前
邓谷云发布了新的文献求助10
9秒前
ghq7724发布了新的文献求助10
9秒前
666999完成签到,获得积分10
10秒前
传奇3应助wsy采纳,获得10
11秒前
12秒前
14秒前
14秒前
15秒前
大模型应助海洋采纳,获得10
16秒前
忧郁的寻冬完成签到,获得积分10
17秒前
琉璃岁月完成签到,获得积分10
18秒前
18秒前
穆子硕发布了新的文献求助10
19秒前
NexusExplorer应助ibigbird采纳,获得10
19秒前
鲤鱼一鸣完成签到 ,获得积分10
19秒前
20秒前
万能图书馆应助gougou采纳,获得10
21秒前
Jasper应助fafa采纳,获得30
23秒前
自觉南风发布了新的文献求助10
23秒前
传奇3应助九黎采纳,获得10
24秒前
小刘完成签到,获得积分10
24秒前
花花完成签到,获得积分10
24秒前
25秒前
Jasper应助LFYL采纳,获得10
27秒前
30秒前
30秒前
32秒前
未来无限完成签到,获得积分10
32秒前
33秒前
33秒前
高分求助中
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 450
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3166387
求助须知:如何正确求助?哪些是违规求助? 2817875
关于积分的说明 7917935
捐赠科研通 2477361
什么是DOI,文献DOI怎么找? 1319594
科研通“疑难数据库(出版商)”最低求助积分说明 632536
版权声明 602415