Research on global optimization method for multiple AGV collision avoidance in hybrid path

粒子群优化 避碰 运动规划 计算机科学 路径(计算) 碰撞 过程(计算) 工程类 数学优化 算法 模拟 机器人 人工智能 数学 操作系统 程序设计语言 计算机安全
作者
Xiaohua Cao,Meng Zhu
出处
期刊:Optimal Control Applications & Methods [Wiley]
卷期号:42 (4): 1064-1080 被引量:10
标识
DOI:10.1002/oca.2716
摘要

Abstract Due to the increasing number of automated guided vehicles (AGVs) in the multi‐AGV system and the limitation of working environment, path conflicts often occur in the working process of AGVs, which affects the working efficiency of the multi‐AGV system. Thus, a optimization method by arranging the AGVs' traffic sequence is proposed in this paper. First, an AGV working map is reconstructed with graph theory, and then the corresponding collision avoidance rules are formulated for different types of conflicts. In multi‐AGV system, each collision avoidance decision has an impact on the efficiency of the system, so it is crucial to adopt appropriate decisions. To optimize the decisions, the system fitness of different collision avoidance decisions are calculated based on the global state of the system, and the particle swarm optimization (PSO) algorithm is used to optimize the decisions. Furthermore, the PSO algorithm is improved by planning the direction of particle motion in the solution space and introducing mutation operation, so as to improve the search ability of the particle in the solution space. To verify the feasibility and effectiveness of the improved particle swarm optimization (IPSO) algorithm, an experiment system is built based on. NET platform. Results show that the IPSO algorithm than the traditional algorithms experimental performs better. The IPSO algorithm can effectively reduce congestion caused by path conflict and enhance the efficiency of the multi‐AGV system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
honey完成签到,获得积分10
刚刚
清酒发布了新的文献求助10
刚刚
29完成签到,获得积分10
1秒前
兜兜发布了新的文献求助10
1秒前
1秒前
长尾巴的人类完成签到,获得积分10
1秒前
李健的小迷弟应助燕子采纳,获得10
1秒前
番茄土豆发布了新的文献求助50
2秒前
2秒前
浮想圆影发布了新的文献求助30
2秒前
2秒前
3秒前
3秒前
4秒前
大个应助暴躁的问兰采纳,获得10
4秒前
77完成签到,获得积分10
4秒前
小王同学完成签到,获得积分10
4秒前
4秒前
Mira发布了新的文献求助10
4秒前
爆米花应助废柴采纳,获得10
5秒前
5秒前
suibian发布了新的文献求助10
5秒前
pxd应助annaanna采纳,获得10
5秒前
5秒前
浮游应助2633148059采纳,获得10
6秒前
禾苗完成签到,获得积分10
6秒前
星辰大海应助内向的涵菡采纳,获得10
6秒前
四夕完成签到 ,获得积分10
6秒前
6秒前
6秒前
wbero完成签到,获得积分10
7秒前
乐乐应助Atoxus采纳,获得10
7秒前
情怀应助Amai采纳,获得10
7秒前
8秒前
MCX发布了新的文献求助10
8秒前
9秒前
JamesPei应助77采纳,获得10
9秒前
杜文博发布了新的文献求助10
9秒前
9秒前
77发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260690
求助须知:如何正确求助?哪些是违规求助? 4422036
关于积分的说明 13764988
捐赠科研通 4296360
什么是DOI,文献DOI怎么找? 2357306
邀请新用户注册赠送积分活动 1353657
关于科研通互助平台的介绍 1314921