Cell spheroids as a versatile research platform: formation mechanisms, high throughput production, characterization and applications

球体 生物加工 吞吐量 微流控 表征(材料科学) 三维细胞培养 组织工程 纳米技术 细胞 细胞培养 计算机科学 化学 生化工程 材料科学 生物系统 生物医学工程 生物 工程类 电信 生物化学 遗传学 无线
作者
Monize Caiado Decarli,Raquel Portugal Guimarães Amaral,Diogo Peres dos Santos,Larissa Bueno Tofani,Eric Takashi Katayama,Rodrigo Alvarenga Rezende,Jorge Vicente Lopes da Silva,Kamilla Swiech,Cláudio Alberto Torres Suazo,Carlos Mota,Lorenzo Moroni,Ângela Maria Moraes
出处
期刊:Biofabrication [IOP Publishing]
卷期号:13 (3): 032002-032002 被引量:56
标识
DOI:10.1088/1758-5090/abe6f2
摘要

Three-dimensional (3D) cell culture has tremendous advantages to closely mimic thein vivoarchitecture and microenvironment of healthy tissue and organs, as well as of solid tumors. Spheroids are currently the most attractive 3D model to produce uniform reproducible cell structures as well as a potential basis for engineering large tissues and complex organs. In this review we discuss, from an engineering perspective, processes to obtain uniform 3D cell spheroids, comparing dynamic and static cultures and considering aspects such as mass transfer and shear stress. In addition, computational and mathematical modeling of complex cell spheroid systems are discussed. The non-cell-adhesive hydrogel-based method and dynamic cell culture in bioreactors are focused in detail and the myriad of developed spheroid characterization techniques is presented. The main bottlenecks and weaknesses are discussed, especially regarding the analysis of morphological parameters, cell quantification and viability, gene expression profiles, metabolic behavior and high-content analysis. Finally, a vast set of applications of spheroids as tools forin vitrostudy model systems is examined, including drug screening, tissue formation, pathologies development, tissue engineering and biofabrication, 3D bioprinting and microfluidics, together with their use in high-throughput platforms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
眼睛大又蓝完成签到,获得积分10
刚刚
kangkang完成签到,获得积分10
刚刚
1秒前
1秒前
绵绵完成签到,获得积分10
1秒前
2秒前
Mlwwq完成签到,获得积分10
2秒前
2秒前
小皮蛋儿完成签到,获得积分10
2秒前
lyn发布了新的文献求助10
2秒前
JUSTs0so完成签到,获得积分10
3秒前
失联者完成签到,获得积分10
3秒前
感性的神级完成签到,获得积分10
3秒前
眯眯眼的谷冬完成签到 ,获得积分10
3秒前
3秒前
花莫凋零发布了新的文献求助10
4秒前
szh123完成签到,获得积分10
4秒前
4秒前
安息香发布了新的文献求助10
4秒前
核桃完成签到,获得积分10
4秒前
丹dan发布了新的文献求助10
4秒前
4秒前
科研通AI5应助大方嵩采纳,获得10
5秒前
5秒前
HYG发布了新的文献求助30
5秒前
5秒前
宝贝发布了新的文献求助10
5秒前
FashionBoy应助tulip采纳,获得10
5秒前
万泉部诗人完成签到,获得积分10
6秒前
文静千愁发布了新的文献求助10
6秒前
YAN发布了新的文献求助10
6秒前
马洛发布了新的文献求助10
6秒前
6秒前
qiqi完成签到,获得积分10
6秒前
7秒前
8秒前
8秒前
喻辰星发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762