Clinically significant prostate cancer detection on MRI with self-supervised learning using image context restoration

人工智能 计算机科学 背景(考古学) 前列腺癌 卷积神经网络 机器学习 深度学习 模式识别(心理学) 人工神经网络 一般化 癌症 医学 数学 数学分析 古生物学 内科学 生物
作者
Amir Bolous,Arun Seetharaman,Indrani Bhattacharya,Richard E. Fan,Simon John Christoph Soerensen,Leo C. Chen,Pejman Ghanouni,Geoffrey A. Sonn,Mirabela Rusu
标识
DOI:10.1117/12.2581557
摘要

Prostate MRI is increasingly used to help localize and target prostate cancer. Yet, the subtle differences in MRI appearance of cancer compared to normal tissue renders MRI interpretation challenging. Deep learning methods hold promise in automating the detection of prostate cancer on MRI, however such approaches require large, well-curated datasets. Although existing methods that employed fully convolutional neural networks have shown promising results, the lack of labeled data can reduce the generalization of these models. Self-supervised learning provides a promising avenue to learn semantic features from unlabeled data. In this study, we apply the self-supervised strategy of image context restoration to detect prostate cancer on MRI and show this improves model performance for two different architectures (U-Net and Holistically Nested Edge Detector) compared to their purely supervised counterparts. We train our models on MRI exams from 381 men with biopsy confirmed cancer. Our study showed self-supervised models outperform randomly initialized models on an independent test set in a variety of training settings. We performed 3 experiments, where we trained with 5%, 25% and 100% of our labeled data, and observed that the U-Net based pre-training and downstream task outperformed other models. We observed the best improvements when training with 5% of the labeled training data, our selfsupervised U-Nets improve per-pixel Area Under the Curve (AUC, 0.71 vs 0.83) and Dice Similarity coefficient (0.19 vs 0.53). When training with 100% of the data, our U-Net-based pretraining and detection achieved an AUC of 0.85 and Dice similarity coefficient of 0.57.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
积极松鼠发布了新的文献求助10
1秒前
1秒前
lr完成签到 ,获得积分10
2秒前
4秒前
super发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
会思考的狐狸完成签到 ,获得积分10
5秒前
kk发布了新的文献求助10
6秒前
7秒前
super完成签到,获得积分10
8秒前
胖头鱼发布了新的文献求助10
8秒前
9秒前
9秒前
10秒前
林非鹿完成签到,获得积分10
10秒前
YC发布了新的文献求助20
11秒前
11秒前
11秒前
马楼发布了新的文献求助10
12秒前
昏睡的胖粘完成签到 ,获得积分10
13秒前
14秒前
huohuo完成签到,获得积分10
14秒前
kk发布了新的文献求助10
15秒前
15秒前
Bugs完成签到,获得积分10
15秒前
Dr_Zayn关注了科研通微信公众号
16秒前
贺豪发布了新的文献求助10
16秒前
满意的妙海完成签到 ,获得积分10
17秒前
科研狗发布了新的文献求助10
17秒前
Mr_Qiu发布了新的文献求助10
17秒前
文艺卿发布了新的文献求助30
18秒前
伯赏诗霜发布了新的文献求助30
19秒前
20秒前
英勇星月发布了新的文献求助10
21秒前
21秒前
彭于晏应助wawa采纳,获得10
22秒前
kk发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502715
关于积分的说明 11109873
捐赠科研通 3233579
什么是DOI,文献DOI怎么找? 1787443
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152