封堵器
细胞生物学
SOD1
泛素
紧密连接
生物
化学
超氧化物歧化酶
氧化应激
生物化学
基因
作者
Jingshu Tang,Yuying Kang,Yujun Zhou,Xinnan Li,Jiaqi Lan,Lei Wu,Xinhong Feng,Ying Peng
标识
DOI:10.1016/j.nbd.2021.105315
摘要
It is increasingly recognized that blood-spinal cord barrier (BSCB) breakdown is a hallmark of amyotrophic lateral sclerosis (ALS). BSCB integrity is disrupted prior to disease onset. Occludin, as the functional component of the endothelial barrier, is downregulated in mouse models expressing ALS-linked superoxide dismutase-1 (SOD1) mutants. However, the molecular mechanisms underlying the regulation of occludin expression remain elusive. Here, using SOD1G93A transgenic mice and endothelial cells expressing SOD1 mutants of different biochemical characteristics, we found that the SOD1 mutation disrupted endothelial barrier integrity and that the occludin expression level was downregulated with disease progression. Our mechanistic studies revealed that abnormal reactive oxygen species (ROS) in mutant SOD1-expressing cells induced occludin phosphorylation, which facilitated the subsequent occludin ubiquitination mediated by the E3 ligase ITCH. Moreover, ubiquitinated occludin interacted with Eps15 to initiate its internalization, then trafficked to Rab5-positive vesicles and be degraded by proteasomes, resulting in a reduction in cell surface localization and total abundance. Notably, either ITCH or Eps15 knockdown was sufficient to rescue occludin degradation and ameliorate endothelial barrier disruption. In conclusion, our study reveals a novel mechanism of occludin degradation mediated by ALS-causing SOD1 mutants and demonstrates a role for occludin in regulating BSCB integrity.
科研通智能强力驱动
Strongly Powered by AbleSci AI