乙烯醇
材料科学
氢键
超分子化学
聚合物
化学工程
高分子化学
纳米复合材料
聚乙烯
复合材料
分子
有机化学
化学
工程类
作者
Yixuan Li,Siheng Li,Junqi Sun
标识
DOI:10.1002/adma.202007371
摘要
Abstract It is challenging to fabricate degradable poly(vinyl alcohol) (PVA)‐based plastics that can be used in watery environments because PVA is soluble in water. In this study, PVA‐based supramolecular plastics with excellent degradability in soil and high mechanical strength in watery environments are fabricated by the complexation of vanillin‐grafted PVA (VPVA), hydrophobic humic acid (HA), and Fe 3+ ions (hereafter denoted as VPVA–HA–Fe complexes). Large‐area PVA‐based plastics can be easily prepared from a solution of VPVA–HA–Fe complexes using a blade‐coating method. The high‐density of hydrogen bonds and coordination interactions, as well as the reinforcement of self‐assembled Fe 3+ ‐chelated HA nanoparticles, facilitate the fabrication of PVA‐based plastics with a breaking strength of ≈85.0 MPa. After immersion in water at room temperature for 7 d, the PVA‐based plastics exhibit a breaking strength of ≈26.2 MPa, which is similar to that of polyethylene in its dry state. Furthermore, owing to the reversibility of the hydrogen bonds and coordination interactions, the VPVA–HA–Fe plastics are recyclable and can be conveniently processed into plastic products with desired shapes. After being placed under soil for ≈108 d, the PVA‐based plastics are completely degraded into nontoxic species without requiring manual interference.
科研通智能强力驱动
Strongly Powered by AbleSci AI