A General Framework for Feature Selection Under Orthogonal Regression With Global Redundancy Minimization

冗余(工程) 判别式 特征选择 计算机科学 人工智能 回归 模式识别(心理学) 子空间拓扑 特征提取 降维 最小冗余特征选择 缩小 特征(语言学) 数据挖掘 机器学习 数学 哲学 操作系统 统计 语言学 程序设计语言
作者
Xueyuan Xu,Xia Wu,Fulin Wei,Wei Zhong,Feiping Nie
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:34 (11): 5056-5069 被引量:28
标识
DOI:10.1109/tkde.2021.3059523
摘要

Feature selection has attracted a lot of attention in obtaining discriminative and non-redundant features from high-dimension data. Compared with traditional filter and wrapper methods, embedded methods can obtain a more informative feature subset by fully considering the importance of features in the classification tasks. However, the existing embedded methods emphasize the above importance of features and mostly ignore the correlation between the features, which leads to retain the correlated and redundant features with similar scores in the feature subset. To solve the problem, we propose a novel supervised embedded feature selection framework, called feature selection under global redundancy minimization in orthogonal regression (GRMOR). The proposed framework can effectively recognize redundant features from a global view of redundancy among the features. We also incorporate the large margin constraint into GRMOR for robust multi-class classification. Compared with the traditional embedded methods based on least square regression, the proposed framework utilizes orthogonal regression to preserve more discriminative information in the subspace, which can help accurately rank the importance of features in the classification tasks. Experimental results on twelve public datasets demonstrate that the proposed framework can obtain superior classification performance and redundancy removal performance than twelve other feature selection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默南晴发布了新的文献求助10
刚刚
有点怪完成签到 ,获得积分10
刚刚
久天发布了新的文献求助10
刚刚
泥花发布了新的文献求助10
1秒前
清风明月发布了新的文献求助10
1秒前
八乙基环辛四烯完成签到,获得积分10
3秒前
畅快的越泽关注了科研通微信公众号
3秒前
4秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
4399com应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得10
5秒前
香蕉觅云应助科研通管家采纳,获得30
5秒前
shinysparrow应助科研通管家采纳,获得100
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
iNk应助科研通管家采纳,获得20
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
6秒前
李健应助科研通管家采纳,获得10
6秒前
yangya应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
开心的金发布了新的文献求助10
7秒前
7秒前
9秒前
hanch完成签到,获得积分10
10秒前
mikann应助王QQ采纳,获得10
10秒前
11秒前
11秒前
小铁匠发布了新的文献求助10
11秒前
阔达的水壶完成签到 ,获得积分10
12秒前
Magician发布了新的文献求助10
12秒前
无敌暴龙战士完成签到,获得积分10
13秒前
14秒前
15秒前
liu完成签到,获得积分10
17秒前
17秒前
yihaiqin发布了新的文献求助10
19秒前
幸福的诗兰完成签到,获得积分20
20秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309946
求助须知:如何正确求助?哪些是违规求助? 2943074
关于积分的说明 8512532
捐赠科研通 2618172
什么是DOI,文献DOI怎么找? 1430892
科研通“疑难数据库(出版商)”最低求助积分说明 664324
邀请新用户注册赠送积分活动 649490