Regression Analysis of Asynchronous Longitudinal Functional and Scalar Data

功能数据分析 估计员 标量(数学) 数学 计算机科学 应用数学 机器学习 人工智能 统计 几何学
作者
Ting Li,Tengfei Li,Zhongyi Zhu,Hongtu Zhu
标识
DOI:10.1080/01621459.2020.1844211
摘要

Many modern large-scale longitudinal neuroimaging studies, such as the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, have collected/are collecting asynchronous scalar and functional variables that are measured at distinct time points. The analyses of temporally asynchronous functional and scalar variables pose major technical challenges to many existing statistical approaches. We propose a class of generalized functional partial-linear varying-coefficient models to appropriately deal with these challenges through introducing both scalar and functional coefficients of interest and using kernel weighting methods. We design penalized kernel-weighted estimating equations to estimate scalar and functional coefficients, in which we represent functional coefficients by using a rich truncated tensor product penalized B-spline basis. We establish the theoretical properties of scalar and functional coefficient estimators including consistency, convergence rate, prediction accuracy, and limiting distributions. We also propose a bootstrap method to test the nullity of both parametric and functional coefficients, while establishing the bootstrap consistency. Simulation studies and the analysis of the ADNI study are used to assess the finite sample performance of our proposed approach. Our real data analysis reveals significant relationship between fractional anisotropy density curves and cognitive function with education, baseline disease status and APOE4 gene as major contributing factors. Supplementary materials for this article are available online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
yyst完成签到 ,获得积分10
6秒前
小二郎应助xHBest采纳,获得10
7秒前
难过代双发布了新的文献求助150
8秒前
天天快乐应助左丘冥采纳,获得10
9秒前
9秒前
互助遵法尚德应助唯有采纳,获得10
10秒前
11秒前
12秒前
zzz发布了新的文献求助10
12秒前
搜集达人应助zzx采纳,获得10
12秒前
13秒前
13秒前
叫我益达完成签到,获得积分10
13秒前
15秒前
15秒前
Ricochet发布了新的文献求助20
15秒前
16秒前
16秒前
yanxun发布了新的文献求助10
17秒前
17秒前
M2106发布了新的文献求助10
18秒前
小豪发布了新的文献求助10
18秒前
淇淇发布了新的文献求助10
19秒前
难过代双完成签到,获得积分10
20秒前
bailing128完成签到,获得积分10
20秒前
22秒前
23秒前
叙温雨发布了新的文献求助10
23秒前
23秒前
25秒前
brucehekai发布了新的文献求助10
26秒前
小马甲应助淇淇采纳,获得10
27秒前
vexille发布了新的文献求助10
27秒前
自由从筠发布了新的文献求助10
27秒前
Cwx2020发布了新的文献求助10
29秒前
33秒前
vexille完成签到,获得积分20
33秒前
花蕊发布了新的文献求助10
37秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149249
求助须知:如何正确求助?哪些是违规求助? 2800330
关于积分的说明 7839533
捐赠科研通 2457883
什么是DOI,文献DOI怎么找? 1308138
科研通“疑难数据库(出版商)”最低求助积分说明 628441
版权声明 601706