透明质酸
肉芽组织
去细胞化
体内
成纤维细胞
糖尿病足
组织工程
明胶
医学
材料科学
伤口愈合
生物医学工程
化学
体外
外科
糖尿病
解剖
生物
生物化学
内分泌学
生物技术
作者
Gamze Kara Magden,Çiğdem Vural,Büşra Yaprak Bayrak,Candan Yilmaz Ozdogan,Halime Kenar
标识
DOI:10.1177/0885328220963897
摘要
Despite the fast development of technology in the world, diabetic foot wounds cause deaths and massive economical losses. Diabetes comes first among the reasons of non traumatic foot amputations. To reduce the healing time of these fast progressing wounds, effective wound dressings are in high demand. In our study, sheep small intestinal submucosa (SIS) based biocompatible sponges were prepared after SIS decellularization and their wound healing potential was investigated on full thickness skin defects in a diabetic rat model. The decellularized SIS membranes had no cytotoxic effects on human fibroblasts and supported capillary formation by HUVECs in a fibroblast-HUVEC co-culture. Glutaraldehyde crosslinked sponges of three different compositions were prepared to test in a diabetic rat model: gelatin (GS), gelatin: hyaluronic acid (GS:HA) and gelatin: hyaluronic acid: SIS (GS:HA:SIS). The GS:HA:SIS sponges underwent a 24.8 ± 5.4% weight loss in a 7-day in vitro erosion test. All sponges had a similar Young's modulus under compression but GS:HA:SIS had the highest (5.00 ± 0.04 kPa). Statistical analyses of histopathological results of a 12-day in vivo experiment revealed no significant difference among the control, GS, GS:HA, and GS:HA:SIS transplanted groups in terms of granulation tissue thickness, collagen deposition, capillary vessel formation, and foreign body reaction (P > 0.05). On the other hand, in the GS:HA:SIS transplanted group 80% of the animals had a complete epidermal regeneration and this was significantly different than the control group (30%, P < 0.05). Preclinical studies revealed that the ECM of sheep small intestinal submucosa can be used as an effective biomaterial in diabetic wound healing.
科研通智能强力驱动
Strongly Powered by AbleSci AI