有机发光二极管
半最大全宽
量子效率
材料科学
电致发光
光电子学
量子产额
单重态
二极管
窄带
共振(粒子物理)
荧光
光学
纳米技术
物理
原子物理学
激发态
图层(电子)
作者
Shen Xu,Qingqing Yang,Ying Zhang,Hui Li,Qin Xue,Guohua Xie,Minzhao Gu,Jibiao Jin,Ling Huang,Runfeng Chen
标识
DOI:10.1016/j.cclet.2020.10.022
摘要
With excellent color purity (full-width half maximum (FWHM) < 40 nm) and high quantum yield, multi-resonance (MR) molecules can harvest both singlet and triplet excitons for highly efficient narrowband organic light-emitting diodes (OLEDs) owing to their thermally activated delayed fluorescence (TADF) nature. However, the highly rigid molecular skeleton with the oppositely positioned boron and nitrogen in generating MR effects results in the intrinsic difficulties in the solution-processing of MR-OLEDs. Here, we demonstrate a facile strategy to increase the solubility, enhance the efficiencies and modulate emission color of MR-TADF molecules by extending aromatic rings and introducing tert-butyls into the MR backbone. Two MR-TADF emitters with smaller singlet-triplet splitting energies (ΔEST) and larger oscillator strengths were prepared conveniently, and the solution-processed MR-OLEDs were fabricated for the first time, exhibiting efficient bluish-green electroluminescence with narrow FWHM of 32 nm and external quantum efficiency of 16.3%, which are even comparable to the state-of-the-art performances of the vacuum-evaporated devices. These results prove the feasibility of designing efficient solution-processible MR molecules, offering important clues in developing high-performance solution-processed MR-OLEDs with high efficiency and color purity.
科研通智能强力驱动
Strongly Powered by AbleSci AI