Autoencoders for unsupervised anomaly segmentation in brain MR images: A comparative study

人工智能 计算机科学 模式识别(心理学) 分割 异常检测 无监督学习 可比性 领域(数学) 代表(政治) 机器学习 领域(数学分析) 排名(信息检索) 深度学习 数学 组合数学 数学分析 政治 法学 纯数学 政治学
作者
Christoph Baur,Stefan Denner,Benedikt Wiestler,Nassir Navab,Shadi Albarqouni
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:69: 101952-101952 被引量:260
标识
DOI:10.1016/j.media.2020.101952
摘要

Abstract Deep unsupervised representation learning has recently led to new approaches in the field of Unsupervised Anomaly Detection (UAD) in brain MRI. The main principle behind these works is to learn a model of normal anatomy by learning to compress and recover healthy data. This allows to spot abnormal structures from erroneous recoveries of compressed, potentially anomalous samples. The concept is of great interest to the medical image analysis community as it i) relieves from the need of vast amounts of manually segmented training data—a necessity for and pitfall of current supervised Deep Learning—and ii) theoretically allows to detect arbitrary, even rare pathologies which supervised approaches might fail to find. To date, the experimental design of most works hinders a valid comparison, because i) they are evaluated against different datasets and different pathologies, ii) use different image resolutions and iii) different model architectures with varying complexity. The intent of this work is to establish comparability among recent methods by utilizing a single architecture, a single resolution and the same dataset(s). Besides providing a ranking of the methods, we also try to answer questions like i) how many healthy training subjects are needed to model normality and ii) if the reviewed approaches are also sensitive to domain shift. Further, we identify open challenges and provide suggestions for future community efforts and research directions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
4秒前
吴世勋fans发布了新的文献求助10
9秒前
9秒前
咕噜咕噜发布了新的文献求助30
10秒前
10秒前
mmmm完成签到,获得积分20
13秒前
小花dgy完成签到,获得积分10
13秒前
蓁蓁发布了新的文献求助10
14秒前
高山七石发布了新的文献求助10
15秒前
16秒前
sow完成签到,获得积分10
18秒前
19秒前
青蓝完成签到,获得积分10
20秒前
jing122061发布了新的文献求助10
21秒前
25秒前
26秒前
27秒前
鹿梨完成签到 ,获得积分10
28秒前
种草匠完成签到,获得积分10
28秒前
贺贺完成签到,获得积分10
29秒前
高山七石完成签到,获得积分10
29秒前
要减肥发布了新的文献求助10
32秒前
快乐123发布了新的文献求助10
32秒前
34秒前
CipherSage应助1234sxcv采纳,获得10
34秒前
杳鸢应助jihaowen采纳,获得30
35秒前
Orange应助芒果不芒采纳,获得10
36秒前
田様应助科研通管家采纳,获得10
36秒前
Lucas应助科研通管家采纳,获得10
37秒前
maox1aoxin应助科研通管家采纳,获得30
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
yifanchen应助科研通管家采纳,获得10
37秒前
搜集达人应助科研通管家采纳,获得10
37秒前
37秒前
pluto应助科研通管家采纳,获得30
38秒前
田様应助科研通管家采纳,获得10
38秒前
善学以致用应助木wm采纳,获得10
38秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Synchrotron X-Ray Methods in Clay Science 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3345925
求助须知:如何正确求助?哪些是违规求助? 2972738
关于积分的说明 8655981
捐赠科研通 2653094
什么是DOI,文献DOI怎么找? 1452972
科研通“疑难数据库(出版商)”最低求助积分说明 672705
邀请新用户注册赠送积分活动 662569