已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of Novel Deep Multimodal Representation Learning-based Model for the Differentiation of Liver Tumors on B-Mode Ultrasound Images

卷积神经网络 深度学习 模式治疗法 人工智能 代表(政治) 计算机科学 模式识别(心理学) 超声波 肝肿瘤 医学 放射科 内科学 政治 政治学 肝细胞癌 法学
作者
Masaya Sato,Tamaki Kobayashi,Yoko Soroida,Takashi Tanaka,T. Nakatsuka,Hayato Nakagawa,Ayaka Nakamura,Makoko Kurihara,Momoe Endo,Hiromi Hikita,Mamiko Sato,Hiroaki Gotoh,Tomomi Iwai,Ryosuke Tateishi,Kazuhiko Koike,Yutaka Yatomi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-143117/v1
摘要

Abstract Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention due to the possibility of combining latent features using a single distribution. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets (479 benign and 493 malignant nodules), to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules, including 53 benign and 55 malignant tumors. Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background such as age or sex and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, AST, ALT, platelet count, and albumin data) reached 96.30% and 0.994, respectively. Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool that can effectively support the definitive diagnosis of liver tumors using B-mode US in daily clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
Evisu发布了新的文献求助10
1秒前
会飞的烧鹅完成签到,获得积分10
2秒前
bobokan应助MY采纳,获得10
2秒前
木木发布了新的文献求助10
3秒前
小马甲应助猪猪侠采纳,获得10
3秒前
烂想家发布了新的文献求助10
6秒前
饱满罡发布了新的文献求助30
6秒前
jjffyy完成签到 ,获得积分10
6秒前
Sun发布了新的文献求助10
7秒前
8秒前
充电宝应助kcl采纳,获得10
8秒前
希望天下0贩的0应助Aimee采纳,获得10
8秒前
jiangmin0702完成签到,获得积分10
10秒前
11秒前
12秒前
哇冰1发布了新的文献求助50
13秒前
13秒前
Mufreh应助木木采纳,获得30
14秒前
萌only发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
李爱国应助凡凡采纳,获得10
16秒前
小池发布了新的文献求助10
18秒前
meng发布了新的文献求助10
18秒前
20秒前
希望天下0贩的0应助文慧采纳,获得10
20秒前
烂想家完成签到,获得积分20
20秒前
你好完成签到 ,获得积分10
21秒前
xxxx应助呆呆兽采纳,获得10
24秒前
Aimee发布了新的文献求助10
25秒前
Sun完成签到,获得积分10
27秒前
彭于晏应助哇冰1采纳,获得10
27秒前
bobokan给褚幻香的求助进行了留言
29秒前
纯真乐儿完成签到 ,获得积分10
30秒前
31秒前
科研橙子完成签到,获得积分10
34秒前
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771770
求助须知:如何正确求助?哪些是违规求助? 5593601
关于积分的说明 15428336
捐赠科研通 4905041
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587060
关于科研通互助平台的介绍 1541941