已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of Novel Deep Multimodal Representation Learning-based Model for the Differentiation of Liver Tumors on B-Mode Ultrasound Images

卷积神经网络 深度学习 模式治疗法 人工智能 代表(政治) 计算机科学 模式识别(心理学) 超声波 肝肿瘤 医学 放射科 内科学 政治 政治学 肝细胞癌 法学
作者
Masaya Sato,Tamaki Kobayashi,Yoko Soroida,Takashi Tanaka,T. Nakatsuka,Hayato Nakagawa,Ayaka Nakamura,Makoko Kurihara,Momoe Endo,Hiromi Hikita,Mamiko Sato,Hiroaki Gotoh,Tomomi Iwai,Ryosuke Tateishi,Kazuhiko Koike,Yutaka Yatomi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-143117/v1
摘要

Abstract Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention due to the possibility of combining latent features using a single distribution. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets (479 benign and 493 malignant nodules), to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules, including 53 benign and 55 malignant tumors. Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background such as age or sex and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, AST, ALT, platelet count, and albumin data) reached 96.30% and 0.994, respectively. Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool that can effectively support the definitive diagnosis of liver tumors using B-mode US in daily clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
4秒前
5秒前
牛芳草发布了新的文献求助10
7秒前
9秒前
hai发布了新的文献求助10
9秒前
光亮的鹏煊完成签到 ,获得积分10
10秒前
qz发布了新的文献求助10
11秒前
Zz发布了新的文献求助10
13秒前
火火完成签到 ,获得积分10
13秒前
牛芳草完成签到,获得积分10
19秒前
英俊的铭应助cream1105采纳,获得10
23秒前
Lucas应助hai采纳,获得10
24秒前
37秒前
star完成签到 ,获得积分10
40秒前
43秒前
小白天钓鱼完成签到 ,获得积分10
44秒前
zz完成签到 ,获得积分10
45秒前
45秒前
顾矜应助Jodie采纳,获得10
47秒前
Zz完成签到,获得积分10
54秒前
今后应助油柑美式采纳,获得10
56秒前
58秒前
Jodie发布了新的文献求助10
1分钟前
1分钟前
西西完成签到 ,获得积分10
1分钟前
风中的天蓝完成签到 ,获得积分10
1分钟前
hai发布了新的文献求助10
1分钟前
烂漫的断秋完成签到 ,获得积分10
1分钟前
科研通AI2S应助chengzhiheng采纳,获得10
1分钟前
科研通AI6应助dwls采纳,获得10
1分钟前
科研通AI6应助anwen采纳,获得10
1分钟前
hada完成签到,获得积分10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
在水一方应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558165
求助须知:如何正确求助?哪些是违规求助? 4643172
关于积分的说明 14670597
捐赠科研通 4584584
什么是DOI,文献DOI怎么找? 2514964
邀请新用户注册赠送积分活动 1489078
关于科研通互助平台的介绍 1459733