Development of Novel Deep Multimodal Representation Learning-based Model for the Differentiation of Liver Tumors on B-Mode Ultrasound Images

卷积神经网络 深度学习 模式治疗法 人工智能 代表(政治) 计算机科学 模式识别(心理学) 超声波 肝肿瘤 医学 放射科 内科学 政治学 政治 法学 肝细胞癌
作者
Masaya Sato,Tamaki Kobayashi,Yoko Soroida,Takashi Tanaka,T. Nakatsuka,Hayato Nakagawa,Ayaka Nakamura,Makoko Kurihara,Momoe Endo,Hiromi Hikita,Mamiko Sato,Hiroaki Gotoh,Tomomi Iwai,Ryosuke Tateishi,Kazuhiko Koike,Yutaka Yatomi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-143117/v1
摘要

Abstract Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention due to the possibility of combining latent features using a single distribution. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets (479 benign and 493 malignant nodules), to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules, including 53 benign and 55 malignant tumors. Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background such as age or sex and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, AST, ALT, platelet count, and albumin data) reached 96.30% and 0.994, respectively. Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool that can effectively support the definitive diagnosis of liver tumors using B-mode US in daily clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助LC采纳,获得10
刚刚
量子星尘发布了新的文献求助10
1秒前
哆啦的空间站应助钱都来采纳,获得10
1秒前
1秒前
孤独的喧嚣仔完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
3秒前
司阔林发布了新的文献求助10
4秒前
科研通AI5应助YY采纳,获得10
4秒前
嗝嗝发布了新的文献求助10
7秒前
喵了个咪发布了新的文献求助10
8秒前
8秒前
Ava应助司阔林采纳,获得10
9秒前
外向渊思发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
orixero应助青青采纳,获得30
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
Thien发布了新的文献求助10
14秒前
ccccc完成签到 ,获得积分10
14秒前
wukong完成签到,获得积分10
14秒前
15秒前
ZSHAN完成签到,获得积分10
17秒前
17秒前
wll0614完成签到,获得积分10
17秒前
好好好完成签到 ,获得积分10
19秒前
Jia发布了新的文献求助10
19秒前
OOYWZEHNN发布了新的文献求助10
19秒前
科研通AI6应助ying采纳,获得10
20秒前
20秒前
20秒前
mengshan发布了新的文献求助10
20秒前
21秒前
22秒前
64658应助zzhou7采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5005849
求助须知:如何正确求助?哪些是违规求助? 4249332
关于积分的说明 13240684
捐赠科研通 4049124
什么是DOI,文献DOI怎么找? 2215180
邀请新用户注册赠送积分活动 1225086
关于科研通互助平台的介绍 1145619