Development of Novel Deep Multimodal Representation Learning-based Model for the Differentiation of Liver Tumors on B-Mode Ultrasound Images

卷积神经网络 深度学习 模式治疗法 人工智能 代表(政治) 计算机科学 模式识别(心理学) 超声波 肝肿瘤 医学 放射科 内科学 政治 政治学 肝细胞癌 法学
作者
Masaya Sato,Tamaki Kobayashi,Yoko Soroida,Takashi Tanaka,T. Nakatsuka,Hayato Nakagawa,Ayaka Nakamura,Makoko Kurihara,Momoe Endo,Hiromi Hikita,Mamiko Sato,Hiroaki Gotoh,Tomomi Iwai,Ryosuke Tateishi,Kazuhiko Koike,Yutaka Yatomi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-143117/v1
摘要

Abstract Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention due to the possibility of combining latent features using a single distribution. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets (479 benign and 493 malignant nodules), to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules, including 53 benign and 55 malignant tumors. Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background such as age or sex and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, AST, ALT, platelet count, and albumin data) reached 96.30% and 0.994, respectively. Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool that can effectively support the definitive diagnosis of liver tumors using B-mode US in daily clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll关注了科研通微信公众号
刚刚
小何发布了新的文献求助10
1秒前
活泼学生发布了新的文献求助10
1秒前
程程程完成签到,获得积分10
1秒前
脑洞疼应助现代的书本采纳,获得10
1秒前
2秒前
WQ发布了新的文献求助10
2秒前
123完成签到,获得积分10
2秒前
KJ完成签到,获得积分10
2秒前
lilizi完成签到,获得积分10
2秒前
东少完成签到,获得积分10
3秒前
3秒前
傻傻的飞丹完成签到 ,获得积分10
3秒前
柏文鸽完成签到,获得积分10
3秒前
3秒前
Kiana完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助20
4秒前
大狼完成签到,获得积分10
4秒前
mufcyang完成签到,获得积分10
4秒前
samurai发布了新的文献求助10
4秒前
5秒前
Agnes发布了新的文献求助10
5秒前
pp发布了新的文献求助10
5秒前
哈哈哈哈完成签到,获得积分10
5秒前
大尾巴白发布了新的文献求助10
6秒前
6秒前
ocean完成签到,获得积分10
6秒前
郭6666完成签到,获得积分10
7秒前
llly发布了新的文献求助10
7秒前
沉默诗兰完成签到,获得积分10
7秒前
7秒前
zho发布了新的文献求助10
7秒前
科研人发布了新的文献求助10
8秒前
stoneff612发布了新的文献求助10
8秒前
9秒前
MarsXHXL发布了新的文献求助10
9秒前
栀尽夏完成签到,获得积分10
9秒前
无花果应助呼啦啦采纳,获得10
9秒前
9秒前
Yang完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573997
求助须知:如何正确求助?哪些是违规求助? 4660326
关于积分的说明 14728933
捐赠科研通 4600192
什么是DOI,文献DOI怎么找? 2524706
邀请新用户注册赠送积分活动 1495014
关于科研通互助平台的介绍 1465017