Development of Novel Deep Multimodal Representation Learning-based Model for the Differentiation of Liver Tumors on B-Mode Ultrasound Images

卷积神经网络 深度学习 模式治疗法 人工智能 代表(政治) 计算机科学 模式识别(心理学) 超声波 肝肿瘤 医学 放射科 内科学 政治学 政治 法学 肝细胞癌
作者
Masaya Sato,Tamaki Kobayashi,Yoko Soroida,Takashi Tanaka,T. Nakatsuka,Hayato Nakagawa,Ayaka Nakamura,Makoko Kurihara,Momoe Endo,Hiromi Hikita,Mamiko Sato,Hiroaki Gotoh,Tomomi Iwai,Ryosuke Tateishi,Kazuhiko Koike,Yutaka Yatomi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-143117/v1
摘要

Abstract Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention due to the possibility of combining latent features using a single distribution. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets (479 benign and 493 malignant nodules), to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules, including 53 benign and 55 malignant tumors. Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background such as age or sex and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, AST, ALT, platelet count, and albumin data) reached 96.30% and 0.994, respectively. Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool that can effectively support the definitive diagnosis of liver tumors using B-mode US in daily clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助123采纳,获得10
1秒前
1秒前
zzer完成签到,获得积分10
2秒前
oo完成签到,获得积分10
3秒前
ADA完成签到,获得积分20
3秒前
4秒前
4秒前
科研通AI2S应助大红豆子采纳,获得10
4秒前
asd发布了新的文献求助10
4秒前
4秒前
面包小狗完成签到,获得积分10
5秒前
饼子完成签到 ,获得积分10
5秒前
5秒前
Lyooooooon完成签到,获得积分10
6秒前
shuai完成签到,获得积分10
7秒前
完美世界应助张豪杰采纳,获得10
8秒前
Lee发布了新的文献求助10
8秒前
二六完成签到,获得积分10
8秒前
8秒前
哈哈发布了新的文献求助10
10秒前
HH发布了新的文献求助10
10秒前
追寻的笑白应助跳跃寄风采纳,获得10
10秒前
10秒前
11秒前
11秒前
Mr发布了新的文献求助10
11秒前
11秒前
合适的落落完成签到 ,获得积分10
13秒前
15秒前
orixero应助重要羊采纳,获得10
15秒前
maniac发布了新的文献求助10
15秒前
16秒前
吃花生酱的猫完成签到,获得积分10
17秒前
18秒前
Jokic完成签到,获得积分10
18秒前
化学纯蓝色完成签到,获得积分10
19秒前
linlin发布了新的文献求助10
19秒前
菊花芭比cz完成签到,获得积分10
20秒前
20秒前
CodeCraft应助HH采纳,获得10
21秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
山海经图录 李云中版 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3327916
求助须知:如何正确求助?哪些是违规求助? 2958108
关于积分的说明 8589214
捐赠科研通 2636402
什么是DOI,文献DOI怎么找? 1442937
科研通“疑难数据库(出版商)”最低求助积分说明 668449
邀请新用户注册赠送积分活动 655663