Development of Novel Deep Multimodal Representation Learning-based Model for the Differentiation of Liver Tumors on B-Mode Ultrasound Images

卷积神经网络 深度学习 模式治疗法 人工智能 代表(政治) 计算机科学 模式识别(心理学) 超声波 肝肿瘤 医学 放射科 内科学 政治 政治学 肝细胞癌 法学
作者
Masaya Sato,Tamaki Kobayashi,Yoko Soroida,Takashi Tanaka,T. Nakatsuka,Hayato Nakagawa,Ayaka Nakamura,Makoko Kurihara,Momoe Endo,Hiromi Hikita,Mamiko Sato,Hiroaki Gotoh,Tomomi Iwai,Ryosuke Tateishi,Kazuhiko Koike,Yutaka Yatomi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-143117/v1
摘要

Abstract Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention due to the possibility of combining latent features using a single distribution. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets (479 benign and 493 malignant nodules), to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules, including 53 benign and 55 malignant tumors. Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background such as age or sex and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, AST, ALT, platelet count, and albumin data) reached 96.30% and 0.994, respectively. Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool that can effectively support the definitive diagnosis of liver tumors using B-mode US in daily clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共勉YOUNG完成签到,获得积分10
刚刚
Lucas应助cloud采纳,获得10
1秒前
zhw发布了新的文献求助10
1秒前
2秒前
观澜发布了新的文献求助10
4秒前
CipherSage应助感谢大家采纳,获得10
5秒前
Weilang发布了新的文献求助10
5秒前
hanhan发布了新的文献求助10
6秒前
6秒前
cheryjay发布了新的文献求助10
8秒前
dj发布了新的文献求助10
9秒前
9秒前
9秒前
zhw完成签到,获得积分10
10秒前
雨寒完成签到 ,获得积分10
10秒前
wshwx完成签到,获得积分10
11秒前
田乐天发布了新的文献求助10
14秒前
16秒前
zpy完成签到,获得积分10
16秒前
隐形曼青应助拉长的花生采纳,获得10
16秒前
核桃发布了新的文献求助10
17秒前
GGbond完成签到 ,获得积分10
18秒前
首席或雪月完成签到,获得积分10
19秒前
赘婿应助xxx采纳,获得10
19秒前
华仔应助水123采纳,获得10
21秒前
科研通AI6应助rr123456采纳,获得30
21秒前
一个西藏发布了新的文献求助10
23秒前
yyq617569158完成签到,获得积分10
23秒前
23秒前
fz应助观澜采纳,获得20
24秒前
27秒前
daigang发布了新的文献求助30
29秒前
lpydz完成签到,获得积分10
29秒前
专注的水壶完成签到 ,获得积分10
29秒前
30秒前
李可以完成签到 ,获得积分10
30秒前
姗珊发布了新的文献求助10
31秒前
量子星尘发布了新的文献求助10
31秒前
拉长的花生完成签到,获得积分20
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603974
求助须知:如何正确求助?哪些是违规求助? 4688823
关于积分的说明 14856352
捐赠科研通 4695693
什么是DOI,文献DOI怎么找? 2541066
邀请新用户注册赠送积分活动 1507254
关于科研通互助平台的介绍 1471832