Development of Novel Deep Multimodal Representation Learning-based Model for the Differentiation of Liver Tumors on B-Mode Ultrasound Images

卷积神经网络 深度学习 模式治疗法 人工智能 代表(政治) 计算机科学 模式识别(心理学) 超声波 肝肿瘤 医学 放射科 内科学 政治 政治学 肝细胞癌 法学
作者
Masaya Sato,Tamaki Kobayashi,Yoko Soroida,Takashi Tanaka,T. Nakatsuka,Hayato Nakagawa,Ayaka Nakamura,Makoko Kurihara,Momoe Endo,Hiromi Hikita,Mamiko Sato,Hiroaki Gotoh,Tomomi Iwai,Ryosuke Tateishi,Kazuhiko Koike,Yutaka Yatomi
出处
期刊:Research Square - Research Square 被引量:1
标识
DOI:10.21203/rs.3.rs-143117/v1
摘要

Abstract Recently, multimodal representation learning for images and other information such as numbers or language has gained much attention due to the possibility of combining latent features using a single distribution. The aim of the current study was to analyze the diagnostic performance of deep multimodal representation model-based integration of tumor image, patient background, and blood biomarkers for the differentiation of liver tumors observed using B-mode ultrasonography (US). First, we applied supervised learning with a convolutional neural network (CNN) to 972 liver nodules in the training and development sets (479 benign and 493 malignant nodules), to develop a predictive model using segmented B-mode tumor images. Additionally, we also applied a deep multimodal representation model to integrate information about patient background or blood biomarkers to B-mode images. We then investigated the performance of the models in an independent test set of 108 liver nodules, including 53 benign and 55 malignant tumors. Using only the segmented B-mode images, the diagnostic accuracy and area under the curve (AUC) values were 68.52% and 0.721, respectively. As the information about patient background such as age or sex and blood biomarkers was integrated, the diagnostic performance increased in a stepwise manner. The diagnostic accuracy and AUC value of the multimodal DL model (which integrated B-mode tumor image, patient age, sex, AST, ALT, platelet count, and albumin data) reached 96.30% and 0.994, respectively. Integration of patient background and blood biomarkers in addition to US image using multimodal representation learning outperformed the CNN model using US images. We expect that the deep multimodal representation model could be a feasible and acceptable tool that can effectively support the definitive diagnosis of liver tumors using B-mode US in daily clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天真的夜山完成签到,获得积分10
1秒前
哈哈尼完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
6秒前
zicong应助博姐37采纳,获得10
6秒前
8秒前
9秒前
赘婿应助xu采纳,获得10
10秒前
shd发布了新的文献求助10
11秒前
yznfly应助机灵柚子采纳,获得200
12秒前
科研通AI2S应助QinCaibin采纳,获得10
12秒前
13秒前
bkagyin应助wenchong采纳,获得10
14秒前
xueshu666发布了新的文献求助10
15秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
万能图书馆应助橙橙采纳,获得10
18秒前
xx完成签到,获得积分10
18秒前
18秒前
19秒前
听宇完成签到,获得积分20
20秒前
科研通AI6应助闪闪凝冬采纳,获得10
20秒前
xcxcc发布了新的文献求助10
21秒前
orixero应助火星上含芙采纳,获得10
21秒前
周周发布了新的文献求助50
21秒前
张娇发布了新的文献求助10
23秒前
坚强煜城发布了新的文献求助10
23秒前
邓佳鑫Alan应助邵锴采纳,获得10
23秒前
24秒前
cjy完成签到,获得积分10
24秒前
cc发布了新的文献求助10
25秒前
脑洞疼应助甜甜玫瑰采纳,获得10
26秒前
光亮的雅柏完成签到,获得积分10
27秒前
28秒前
masterwill发布了新的文献求助10
28秒前
浮游应助坚强煜城采纳,获得10
28秒前
善学以致用应助坚强煜城采纳,获得10
29秒前
蚊蚊爱读书应助典雅嫣采纳,获得10
29秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449198
求助须知:如何正确求助?哪些是违规求助? 4557419
关于积分的说明 14263155
捐赠科研通 4480370
什么是DOI,文献DOI怎么找? 2454462
邀请新用户注册赠送积分活动 1445133
关于科研通互助平台的介绍 1420965