Earthquake magnitude and location estimation from real time seismic waveforms with a transformer network

震级(天文学) 计算机科学 预警系统 推论 数据挖掘 概率逻辑 波形 人工智能 天文 电信 物理 雷达
作者
Jannes Münchmeyer,Dino Bindi,Ulf Leser,Frederik Tilmann
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:226 (2): 1086-1104 被引量:28
标识
DOI:10.1093/gji/ggab139
摘要

SUMMARY Precise real time estimates of earthquake magnitude and location are essential for early warning and rapid response. While recently multiple deep learning approaches for fast assessment of earthquakes have been proposed, they usually rely on either seismic records from a single station or from a fixed set of seismic stations. Here we introduce a new model for real-time magnitude and location estimation using the attention based transformer networks. Our approach incorporates waveforms from a dynamically varying set of stations and outperforms deep learning baselines in both magnitude and location estimation performance. Furthermore, it outperforms a classical magnitude estimation algorithm considerably and shows promising performance in comparison to a classical localization algorithm. Our model is applicable to real-time prediction and provides realistic uncertainty estimates based on probabilistic inference. In this work, we furthermore conduct a comprehensive study of the requirements on training data, the training procedures and the typical failure modes. Using three diverse and large scale data sets, we conduct targeted experiments and a qualitative error analysis. Our analysis gives several key insights. First, we can precisely pinpoint the effect of large training data; for example, a four times larger training set reduces average errors for both magnitude and location prediction by more than half, and reduces the required time for real time assessment by a factor of four. Secondly, the basic model systematically underestimates large magnitude events. This issue can be mitigated, and in some cases completely resolved, by incorporating events from other regions into the training through transfer learning. Thirdly, location estimation is highly precise in areas with sufficient training data, but is strongly degraded for events outside the training distribution, sometimes producing massive outliers. Our analysis suggests that these characteristics are not only present for our model, but for most deep learning models for fast assessment published so far. They result from the black box modeling and their mitigation will likely require imposing physics derived constraints on the neural network. These characteristics need to be taken into consideration for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭佳丽完成签到,获得积分10
2秒前
香蕉觅云应助张雅露采纳,获得10
3秒前
akakns完成签到,获得积分10
3秒前
da发布了新的文献求助10
3秒前
3秒前
红箭烟雨发布了新的文献求助10
5秒前
6秒前
6秒前
陈仲完成签到,获得积分10
6秒前
7秒前
加快步伐发布了新的文献求助10
9秒前
10秒前
10秒前
Lucas应助粥粥采纳,获得30
10秒前
11秒前
XT完成签到,获得积分10
12秒前
12秒前
寒假工完成签到 ,获得积分10
12秒前
12秒前
13秒前
14秒前
李某发布了新的文献求助10
15秒前
15秒前
所所应助Somebody采纳,获得10
15秒前
15秒前
wzgkeyantong完成签到,获得积分10
16秒前
yxy发布了新的文献求助10
16秒前
16秒前
16秒前
16秒前
17秒前
yyyyyyy发布了新的文献求助10
18秒前
XT发布了新的文献求助10
18秒前
18秒前
19秒前
19秒前
Owen应助aaa采纳,获得10
19秒前
piranha发布了新的文献求助10
20秒前
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979779
求助须知:如何正确求助?哪些是违规求助? 3523794
关于积分的说明 11218782
捐赠科研通 3261278
什么是DOI,文献DOI怎么找? 1800526
邀请新用户注册赠送积分活动 879143
科研通“疑难数据库(出版商)”最低求助积分说明 807182