Earthquake magnitude and location estimation from real time seismic waveforms with a transformer network

震级(天文学) 计算机科学 预警系统 推论 数据挖掘 概率逻辑 波形 人工智能 天文 电信 物理 雷达
作者
Jannes Münchmeyer,Dino Bindi,Ulf Leser,Frederik Tilmann
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:226 (2): 1086-1104 被引量:28
标识
DOI:10.1093/gji/ggab139
摘要

SUMMARY Precise real time estimates of earthquake magnitude and location are essential for early warning and rapid response. While recently multiple deep learning approaches for fast assessment of earthquakes have been proposed, they usually rely on either seismic records from a single station or from a fixed set of seismic stations. Here we introduce a new model for real-time magnitude and location estimation using the attention based transformer networks. Our approach incorporates waveforms from a dynamically varying set of stations and outperforms deep learning baselines in both magnitude and location estimation performance. Furthermore, it outperforms a classical magnitude estimation algorithm considerably and shows promising performance in comparison to a classical localization algorithm. Our model is applicable to real-time prediction and provides realistic uncertainty estimates based on probabilistic inference. In this work, we furthermore conduct a comprehensive study of the requirements on training data, the training procedures and the typical failure modes. Using three diverse and large scale data sets, we conduct targeted experiments and a qualitative error analysis. Our analysis gives several key insights. First, we can precisely pinpoint the effect of large training data; for example, a four times larger training set reduces average errors for both magnitude and location prediction by more than half, and reduces the required time for real time assessment by a factor of four. Secondly, the basic model systematically underestimates large magnitude events. This issue can be mitigated, and in some cases completely resolved, by incorporating events from other regions into the training through transfer learning. Thirdly, location estimation is highly precise in areas with sufficient training data, but is strongly degraded for events outside the training distribution, sometimes producing massive outliers. Our analysis suggests that these characteristics are not only present for our model, but for most deep learning models for fast assessment published so far. They result from the black box modeling and their mitigation will likely require imposing physics derived constraints on the neural network. These characteristics need to be taken into consideration for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gslscuer完成签到,获得积分10
1秒前
野性的曼香完成签到 ,获得积分10
1秒前
弹指一挥间完成签到,获得积分10
2秒前
2秒前
2秒前
C‘x发布了新的文献求助20
2秒前
试试试完成签到 ,获得积分10
3秒前
饱满绮波完成签到,获得积分10
3秒前
3秒前
3秒前
啾啾尼泊尔完成签到,获得积分10
4秒前
4秒前
4秒前
mazynjp0发布了新的文献求助10
5秒前
Vizzy发布了新的文献求助50
5秒前
Adhsksa发布了新的文献求助10
6秒前
whz发布了新的文献求助10
7秒前
春夏秋冬发布了新的文献求助10
7秒前
饱满绮波发布了新的文献求助10
7秒前
7秒前
马齿苋发布了新的文献求助10
7秒前
羊青丝发布了新的文献求助10
8秒前
8秒前
111发布了新的文献求助10
8秒前
8秒前
9秒前
坚强的元菱完成签到,获得积分10
9秒前
9秒前
好名字完成签到 ,获得积分10
9秒前
10秒前
脑洞疼应助引觞甫采纳,获得10
10秒前
JJ发布了新的文献求助30
11秒前
无机非发布了新的文献求助10
12秒前
自然完成签到,获得积分10
12秒前
12秒前
猫咪也疯狂完成签到,获得积分10
13秒前
LI1发布了新的文献求助30
13秒前
shitaocameron发布了新的文献求助10
13秒前
Maribo完成签到,获得积分10
13秒前
科目三应助躺平的搬砖人采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143246
求助须知:如何正确求助?哪些是违规求助? 2794391
关于积分的说明 7811052
捐赠科研通 2450640
什么是DOI,文献DOI怎么找? 1303909
科研通“疑难数据库(出版商)”最低求助积分说明 627144
版权声明 601386