亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Earthquake magnitude and location estimation from real time seismic waveforms with a transformer network

震级(天文学) 计算机科学 学习迁移 预警系统 变压器 数据挖掘 深度学习 波形 机器学习 人工智能 工程类 雷达 天文 电压 物理 电气工程 电信
作者
Jannes Münchmeyer,Dino Bindi,Ulf Leser,Frederik Tilmann
出处
期刊:Geophysical Journal International [Oxford University Press]
卷期号:226 (2): 1086-1104 被引量:79
标识
DOI:10.1093/gji/ggab139
摘要

Precise real time estimates of earthquake magnitude and location are essential for early warning and rapid response. While recently multiple deep learning approaches for fast assessment of earthquakes have been proposed, they usually rely on either seismic records from a single station or from a fixed set of seismic stations. Here we introduce a new model for real-time magnitude and location estimation using the attention based transformer networks. Our approach incorporates waveforms from a dynamically varying set of stations and outperforms deep learning baselines in both magnitude and location estimation performance. Furthermore, it outperforms a classical magnitude estimation algorithm considerably and shows promising performance in comparison to a classical localization algorithm. In this work, we furthermore conduct a comprehensive study of the requirements on training data, the training procedures and the typical failure modes using three diverse and large scale data sets. Our analysis gives several key insights. First, we can precisely pinpoint the effect of large training data; for example, a four times larger training set reduces the required time for real time assessment by a factor of four. Second, the basic model systematically underestimates large magnitude events. This issue can be mitigated by incorporating events from other regions into the training through transfer learning. Third, location estimation is highly precise in areas with sufficient training data, but is strongly degraded for events outside the training distribution. Our analysis suggests that these characteristics are not only present for our model, but for most deep learning models for fast assessment published so far. They result from the black box modeling and their mitigation will likely require imposing physics derived constraints on the neural network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
袁梦发布了新的文献求助10
14秒前
科研通AI6应助袁梦采纳,获得10
30秒前
上官若男应助马良采纳,获得10
46秒前
贰鸟完成签到,获得积分0
46秒前
56秒前
科研通AI5应助jitianxing采纳,获得10
57秒前
马良发布了新的文献求助10
59秒前
1分钟前
花落无声完成签到 ,获得积分10
1分钟前
jitianxing发布了新的文献求助10
1分钟前
jitianxing完成签到,获得积分20
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科研通AI5应助jitianxing采纳,获得10
1分钟前
沉默白桃完成签到 ,获得积分10
2分钟前
感动清炎完成签到,获得积分10
3分钟前
Ava应助oleskarabach采纳,获得10
3分钟前
4分钟前
领导范儿应助gszy1975采纳,获得10
5分钟前
靓丽的熠彤完成签到,获得积分10
6分钟前
6分钟前
四氧化三铁完成签到,获得积分10
6分钟前
6分钟前
云云发布了新的文献求助10
6分钟前
wuju完成签到,获得积分10
6分钟前
Raunio完成签到,获得积分10
7分钟前
共享精神应助科研通管家采纳,获得10
7分钟前
Tales完成签到 ,获得积分10
8分钟前
KINGAZX完成签到 ,获得积分10
8分钟前
武雨珍完成签到,获得积分10
8分钟前
9分钟前
gszy1975发布了新的文献求助10
9分钟前
Jasper应助科研通管家采纳,获得10
9分钟前
FashionBoy应助thchiang采纳,获得10
9分钟前
852应助陈杰采纳,获得10
10分钟前
科研通AI5应助马良采纳,获得10
11分钟前
小米的稻田完成签到 ,获得积分10
11分钟前
11分钟前
马良发布了新的文献求助10
11分钟前
Jasper应助专注的子骞采纳,获得10
12分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582395
求助须知:如何正确求助?哪些是违规求助? 4000118
关于积分的说明 12382192
捐赠科研通 3675087
什么是DOI,文献DOI怎么找? 2025689
邀请新用户注册赠送积分活动 1059330
科研通“疑难数据库(出版商)”最低求助积分说明 946014