材料科学
电解质
氧化物
钙钛矿(结构)
电导率
开路电压
极化(电化学)
异质结
光电子学
电极
化学工程
电压
电气工程
化学
物理化学
工程类
冶金
作者
Yixiao Cai,Jing Wang,Muhammad Akbar,Bin Jin,Zhengwen Tu,Naveed Mushtaq,Baoyuan Wang,Xiangyang Qu,Xia Chen,Yizhong Huang
标识
DOI:10.1007/s40820-020-00574-3
摘要
Abstract Since colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite, heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells (SOFCs). However, so far, the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO 3 . In this study, a series of fluorite/perovskite heterostructures made of Sm-doped CeO 2 and SrTiO 3 (SDC–STO) are developed in a new bulk-heterostructure form and evaluated as electrolytes. The prepared cells exhibit a peak power density of 892 mW cm −2 along with open circuit voltage of 1.1 V at 550 °C for the optimal composition of 4SDC–6STO. Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm −1 at 450–550 °C, which shows remarkable enhancement compared to that of simplex SDC. Via AC impedance analysis, it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance. Furthermore, a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell. Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI