亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gene Set Correlation Analysis and Visualization Using Gene Expression Data

集合(抽象数据类型) 计算生物学 基因 计算机科学 基因表达 数据挖掘 数据集 协方差 基因相互作用 基因调控网络 生物 人工智能 相关性 遗传学 数学 统计 程序设计语言 几何学
作者
Tsai Chen-An,J. Chen James
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (3): 406-421 被引量:2
标识
DOI:10.2174/1574893615999200629124444
摘要

Background: Gene set enrichment analyses (GSEA) provide a useful and powerful approach to identify differentially expressed gene sets with prior biological knowledge. Several GSEA algorithms have been proposed to perform enrichment analyses on groups of genes. However, many of these algorithms have focused on the identification of differentially expressed gene sets in a given phenotype. Objective: In this paper, we propose a gene set analytic framework, Gene Set Correlation Analysis (GSCoA), that simultaneously measures within and between gene sets variation to identify sets of genes enriched for differential expression and highly co-related pathways. Methods: We apply co-inertia analysis to the comparisons of cross-gene sets in gene expression data to measure the co-structure of expression profiles in pairs of gene sets. Co-inertia analysis (CIA) is one multivariate method to identify trends or co-relationships in multiple datasets, which contain the same samples. The objective of CIA is to seek ordinations (dimension reduction diagrams) of two gene sets such that the square covariance between the projections of the gene sets on successive axes is maximized. Simulation studies illustrate that CIA offers superior performance in identifying corelationships between gene sets in all simulation settings when compared to correlation-based gene set methods. Result and Conclusion: We also combine between-gene set CIA and GSEA to discover the relationships between gene sets significantly associated with phenotypes. In addition, we provide a graphical technique for visualizing and simultaneously exploring the associations of between and within gene sets and their interaction and network. We then demonstrate integration of within and between gene sets variation using CIA and GSEA, applied to the p53 gene expression data using the c2 curated gene sets. Ultimately, the GSCoA approach provides an attractive tool for identification and visualization of novel associations between pairs of gene sets by integrating co-relationships between gene sets into gene set analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助哭泣秋蝶采纳,获得10
1分钟前
1分钟前
1分钟前
LULU发布了新的文献求助30
1分钟前
哭泣秋蝶发布了新的文献求助10
1分钟前
hugeyoung发布了新的文献求助20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
LIHONG1994发布了新的文献求助10
2分钟前
Jasper应助LULU采纳,获得10
3分钟前
小灰灰完成签到 ,获得积分10
3分钟前
3分钟前
Ffegrbgbsssgr发布了新的文献求助10
3分钟前
调皮芫完成签到,获得积分10
4分钟前
深情安青应助LIHONG1994采纳,获得10
4分钟前
Ffegrbgbsssgr完成签到,获得积分20
4分钟前
淡淡醉波wuliao完成签到 ,获得积分10
5分钟前
田様应助阿明采纳,获得10
5分钟前
慢慢的地理人完成签到,获得积分10
5分钟前
wxy完成签到 ,获得积分10
5分钟前
Hello应助外向板栗采纳,获得10
5分钟前
5分钟前
酚酞v发布了新的文献求助10
5分钟前
所所应助酚酞v采纳,获得10
6分钟前
在水一方完成签到 ,获得积分0
7分钟前
奔跑的蒲公英完成签到,获得积分10
7分钟前
123456完成签到,获得积分0
7分钟前
KY Mr.WANG完成签到,获得积分10
7分钟前
吕半鬼完成签到,获得积分10
7分钟前
拜托你清醒一点完成签到 ,获得积分10
8分钟前
8分钟前
阿明发布了新的文献求助10
8分钟前
感动白开水完成签到,获得积分10
8分钟前
无花果应助阿明采纳,获得30
8分钟前
顾矜应助季1采纳,获得10
8分钟前
9分钟前
外向板栗发布了新的文献求助10
9分钟前
9分钟前
季1发布了新的文献求助10
9分钟前
英姑应助季1采纳,获得10
9分钟前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3126107
求助须知:如何正确求助?哪些是违规求助? 2776278
关于积分的说明 7729751
捐赠科研通 2431767
什么是DOI,文献DOI怎么找? 1292236
科研通“疑难数据库(出版商)”最低求助积分说明 622609
版权声明 600392