亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Gene Set Correlation Analysis and Visualization Using Gene Expression Data

集合(抽象数据类型) 计算生物学 基因 计算机科学 基因表达 数据挖掘 数据集 协方差 基因相互作用 基因调控网络 生物 人工智能 相关性 遗传学 数学 统计 程序设计语言 几何学
作者
Tsai Chen-An,J. Chen James
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:16 (3): 406-421 被引量:2
标识
DOI:10.2174/1574893615999200629124444
摘要

Background: Gene set enrichment analyses (GSEA) provide a useful and powerful approach to identify differentially expressed gene sets with prior biological knowledge. Several GSEA algorithms have been proposed to perform enrichment analyses on groups of genes. However, many of these algorithms have focused on the identification of differentially expressed gene sets in a given phenotype. Objective: In this paper, we propose a gene set analytic framework, Gene Set Correlation Analysis (GSCoA), that simultaneously measures within and between gene sets variation to identify sets of genes enriched for differential expression and highly co-related pathways. Methods: We apply co-inertia analysis to the comparisons of cross-gene sets in gene expression data to measure the co-structure of expression profiles in pairs of gene sets. Co-inertia analysis (CIA) is one multivariate method to identify trends or co-relationships in multiple datasets, which contain the same samples. The objective of CIA is to seek ordinations (dimension reduction diagrams) of two gene sets such that the square covariance between the projections of the gene sets on successive axes is maximized. Simulation studies illustrate that CIA offers superior performance in identifying corelationships between gene sets in all simulation settings when compared to correlation-based gene set methods. Result and Conclusion: We also combine between-gene set CIA and GSEA to discover the relationships between gene sets significantly associated with phenotypes. In addition, we provide a graphical technique for visualizing and simultaneously exploring the associations of between and within gene sets and their interaction and network. We then demonstrate integration of within and between gene sets variation using CIA and GSEA, applied to the p53 gene expression data using the c2 curated gene sets. Ultimately, the GSCoA approach provides an attractive tool for identification and visualization of novel associations between pairs of gene sets by integrating co-relationships between gene sets into gene set analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助liudy采纳,获得10
10秒前
彭于晏应助andrew12399采纳,获得10
16秒前
20秒前
liudy完成签到,获得积分10
21秒前
liudy发布了新的文献求助10
23秒前
25秒前
andrew12399完成签到,获得积分10
26秒前
andrew12399发布了新的文献求助10
29秒前
Eatanicecube完成签到,获得积分10
54秒前
af完成签到,获得积分10
54秒前
针真滴完成签到 ,获得积分10
1分钟前
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
科研通AI5应助安详宛筠采纳,获得10
2分钟前
2分钟前
小燕子完成签到 ,获得积分10
2分钟前
安详宛筠发布了新的文献求助10
2分钟前
apt完成签到 ,获得积分10
2分钟前
balko完成签到,获得积分10
3分钟前
3分钟前
ST发布了新的文献求助10
3分钟前
局内人完成签到,获得积分10
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
sailingluwl完成签到,获得积分10
4分钟前
夜休2024完成签到 ,获得积分10
4分钟前
Lucas应助Ganfei采纳,获得30
4分钟前
科研通AI6应助秋日思语采纳,获得10
5分钟前
5分钟前
丘比特应助ST采纳,获得10
5分钟前
田雪发布了新的文献求助10
5分钟前
YifanWang应助科研通管家采纳,获得30
5分钟前
Ava应助科研通管家采纳,获得10
5分钟前
YifanWang应助科研通管家采纳,获得30
5分钟前
LU完成签到,获得积分10
5分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211087
求助须知:如何正确求助?哪些是违规求助? 4387655
关于积分的说明 13663050
捐赠科研通 4247697
什么是DOI,文献DOI怎么找? 2330440
邀请新用户注册赠送积分活动 1328218
关于科研通互助平台的介绍 1281049