Gene Set Correlation Analysis and Visualization Using Gene Expression Data

集合(抽象数据类型) 计算生物学 基因 计算机科学 基因表达 数据挖掘 数据集 协方差 基因相互作用 基因调控网络 生物 人工智能 相关性 遗传学 数学 统计 程序设计语言 几何学
作者
Tsai Chen-An,J. Chen James
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (3): 406-421 被引量:2
标识
DOI:10.2174/1574893615999200629124444
摘要

Background: Gene set enrichment analyses (GSEA) provide a useful and powerful approach to identify differentially expressed gene sets with prior biological knowledge. Several GSEA algorithms have been proposed to perform enrichment analyses on groups of genes. However, many of these algorithms have focused on the identification of differentially expressed gene sets in a given phenotype. Objective: In this paper, we propose a gene set analytic framework, Gene Set Correlation Analysis (GSCoA), that simultaneously measures within and between gene sets variation to identify sets of genes enriched for differential expression and highly co-related pathways. Methods: We apply co-inertia analysis to the comparisons of cross-gene sets in gene expression data to measure the co-structure of expression profiles in pairs of gene sets. Co-inertia analysis (CIA) is one multivariate method to identify trends or co-relationships in multiple datasets, which contain the same samples. The objective of CIA is to seek ordinations (dimension reduction diagrams) of two gene sets such that the square covariance between the projections of the gene sets on successive axes is maximized. Simulation studies illustrate that CIA offers superior performance in identifying corelationships between gene sets in all simulation settings when compared to correlation-based gene set methods. Result and Conclusion: We also combine between-gene set CIA and GSEA to discover the relationships between gene sets significantly associated with phenotypes. In addition, we provide a graphical technique for visualizing and simultaneously exploring the associations of between and within gene sets and their interaction and network. We then demonstrate integration of within and between gene sets variation using CIA and GSEA, applied to the p53 gene expression data using the c2 curated gene sets. Ultimately, the GSCoA approach provides an attractive tool for identification and visualization of novel associations between pairs of gene sets by integrating co-relationships between gene sets into gene set analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xtlx完成签到,获得积分10
刚刚
蓝桉完成签到,获得积分10
1秒前
执着的怜寒应助aaaabc采纳,获得20
1秒前
1秒前
花花发布了新的文献求助10
1秒前
万能图书馆应助白华苍松采纳,获得10
2秒前
孔大漂亮完成签到,获得积分10
3秒前
4秒前
打打应助HopeStar采纳,获得10
4秒前
4秒前
科研通AI5应助标致小伙采纳,获得30
4秒前
有风发布了新的文献求助10
4秒前
4秒前
路在脚下完成签到 ,获得积分10
4秒前
bkagyin应助GOODYUE采纳,获得10
5秒前
Jasper应助彩色的蓝天采纳,获得10
5秒前
詹严青发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
郭翔完成签到,获得积分10
6秒前
Yeong发布了新的文献求助10
7秒前
jh完成签到 ,获得积分10
7秒前
syq完成签到,获得积分10
8秒前
sfw完成签到,获得积分10
8秒前
9秒前
光亮面包完成签到 ,获得积分10
9秒前
小猪啵比完成签到 ,获得积分10
9秒前
小智发布了新的文献求助10
9秒前
毛慢慢发布了新的文献求助10
9秒前
lilac应助1234567890采纳,获得10
10秒前
OYE发布了新的文献求助10
10秒前
木木发布了新的文献求助10
11秒前
zhy完成签到,获得积分10
12秒前
12秒前
自由的刺猬完成签到,获得积分20
12秒前
潇洒甜瓜发布了新的文献求助10
13秒前
jessie完成签到,获得积分10
13秒前
化学胖子完成签到,获得积分10
13秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759