Gene Set Correlation Analysis and Visualization Using Gene Expression Data

集合(抽象数据类型) 计算生物学 基因 计算机科学 基因表达 数据挖掘 数据集 协方差 基因相互作用 基因调控网络 生物 人工智能 相关性 遗传学 数学 统计 程序设计语言 几何学
作者
Tsai Chen-An,J. Chen James
出处
期刊:Current Bioinformatics [Bentham Science]
卷期号:16 (3): 406-421 被引量:2
标识
DOI:10.2174/1574893615999200629124444
摘要

Background: Gene set enrichment analyses (GSEA) provide a useful and powerful approach to identify differentially expressed gene sets with prior biological knowledge. Several GSEA algorithms have been proposed to perform enrichment analyses on groups of genes. However, many of these algorithms have focused on the identification of differentially expressed gene sets in a given phenotype. Objective: In this paper, we propose a gene set analytic framework, Gene Set Correlation Analysis (GSCoA), that simultaneously measures within and between gene sets variation to identify sets of genes enriched for differential expression and highly co-related pathways. Methods: We apply co-inertia analysis to the comparisons of cross-gene sets in gene expression data to measure the co-structure of expression profiles in pairs of gene sets. Co-inertia analysis (CIA) is one multivariate method to identify trends or co-relationships in multiple datasets, which contain the same samples. The objective of CIA is to seek ordinations (dimension reduction diagrams) of two gene sets such that the square covariance between the projections of the gene sets on successive axes is maximized. Simulation studies illustrate that CIA offers superior performance in identifying corelationships between gene sets in all simulation settings when compared to correlation-based gene set methods. Result and Conclusion: We also combine between-gene set CIA and GSEA to discover the relationships between gene sets significantly associated with phenotypes. In addition, we provide a graphical technique for visualizing and simultaneously exploring the associations of between and within gene sets and their interaction and network. We then demonstrate integration of within and between gene sets variation using CIA and GSEA, applied to the p53 gene expression data using the c2 curated gene sets. Ultimately, the GSCoA approach provides an attractive tool for identification and visualization of novel associations between pairs of gene sets by integrating co-relationships between gene sets into gene set analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
000完成签到,获得积分20
1秒前
黄橙子完成签到,获得积分10
1秒前
2秒前
3秒前
焦一丹完成签到 ,获得积分10
3秒前
Suki完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
尘中磨镜人完成签到,获得积分10
6秒前
懒洋洋完成签到,获得积分10
6秒前
SciGPT应助一味地丶逞强采纳,获得10
6秒前
6秒前
Twonej应助芒果豆豆采纳,获得30
7秒前
迷路水蜜桃完成签到,获得积分10
7秒前
Zemo完成签到,获得积分10
9秒前
吴泰霞发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
彭于晏应助马铃薯采纳,获得10
10秒前
10秒前
13068957428完成签到 ,获得积分10
11秒前
万能图书馆应助少冰雪采纳,获得10
12秒前
小蘑菇应助威威采纳,获得10
12秒前
Sawyer发布了新的文献求助30
12秒前
kk完成签到,获得积分10
13秒前
13秒前
14秒前
科研通AI6.1应助刘威采纳,获得10
15秒前
16秒前
pxr完成签到,获得积分10
17秒前
脖子发布了新的文献求助30
17秒前
17秒前
17秒前
懒洋洋发布了新的文献求助10
17秒前
熊猫奇思完成签到,获得积分10
17秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
腼腆的大白菜真实的钥匙完成签到,获得积分10
18秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751919
求助须知:如何正确求助?哪些是违规求助? 5471387
关于积分的说明 15372166
捐赠科研通 4891119
什么是DOI,文献DOI怎么找? 2630143
邀请新用户注册赠送积分活动 1578330
关于科研通互助平台的介绍 1534331