亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of methane adsorption in shale: Classical models and machine learning based models

油页岩 甲烷 吸附 等温过程 页岩气 梯度升压 人工神经网络 支持向量机 石油工程 地质学 计算机科学 环境科学 工艺工程 人工智能 化学 随机森林 热力学 工程类 古生物学 物理 有机化学
作者
Meng Meng,Ruizhi Zhong,Zhili Wei
出处
期刊:Fuel [Elsevier]
卷期号:278: 118358-118358 被引量:81
标识
DOI:10.1016/j.fuel.2020.118358
摘要

Shale gas contributes significantly to current global energy consumption, and an accurate estimation of geological gas-in-place (GIP) determines an optimal production plan. As the dominant form of storage, adsorbed gas in shale formation is of primary importance to be assessed. This paper summarizes adsorption models into traditional pressure/density dependent isothermal models, pressure and temperature unified model, and machine learning based models. Using a comprehensive experimental dataset, these models are applied to simulate shale gas adsorption under in-situ conditions. Results show that the modified Dubinin-Radushkevich (DR) model provides the optimal performance in traditional isothermal models. Pressure and temperature unified models make a breakthrough in isothermal conditions and can extrapolate the predictions beyond test ranges of temperature. Well-trained machine learning models not only break the limit of the isothermal condition and types of shale formation, but can also provide reasonable extrapolations beyond test ranges of temperature, total organic carbon (TOC), and moisture. Four popular machine learning algorithms are used, which include artificial neural network (ANN), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost). The XGBoost model is found to provide the best results for predicting shale gas adsorption, and it can be conveniently updated for broader applications with more available data. Overall, this paper demonstrates the capability of machine learning for prediction of shale gas adsorption, and the well-trained model can potentially be built into a large numerical frame to optimize production curves of shale gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵毛豆完成签到 ,获得积分10
1秒前
NSS完成签到,获得积分10
3秒前
4秒前
从容的丹南完成签到 ,获得积分10
4秒前
努力的淼淼完成签到 ,获得积分10
5秒前
6秒前
7秒前
沉默飞风发布了新的文献求助10
9秒前
CNSSCI发布了新的文献求助10
10秒前
Hello应助sangsang采纳,获得10
10秒前
小刘完成签到,获得积分10
11秒前
酷波er应助一辰不染采纳,获得10
12秒前
可靠蜗牛完成签到,获得积分10
17秒前
小蘑菇应助CNSSCI采纳,获得10
20秒前
大模型应助qiahao采纳,获得10
23秒前
Wdw2236完成签到 ,获得积分20
24秒前
29秒前
ZhaoW完成签到,获得积分10
30秒前
ZhaoW发布了新的文献求助10
34秒前
万能图书馆应助TingtingGZ采纳,获得10
41秒前
46秒前
46秒前
辣辣完成签到,获得积分10
53秒前
53秒前
xiaofan_www发布了新的文献求助10
53秒前
wanci应助无韶的月亮树采纳,获得10
53秒前
亚铁氰化钾完成签到,获得积分10
56秒前
TingtingGZ发布了新的文献求助10
1分钟前
可靠的一手完成签到 ,获得积分10
1分钟前
1分钟前
调皮的千万完成签到,获得积分10
1分钟前
1分钟前
1分钟前
大个应助朝朝暮夕采纳,获得30
1分钟前
1分钟前
久9完成签到 ,获得积分10
1分钟前
望春风发布了新的文献求助10
1分钟前
Geist完成签到 ,获得积分10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476235
求助须知:如何正确求助?哪些是违规求助? 4577928
关于积分的说明 14363195
捐赠科研通 4505804
什么是DOI,文献DOI怎么找? 2468878
邀请新用户注册赠送积分活动 1456491
关于科研通互助平台的介绍 1430126