Prediction of methane adsorption in shale: Classical models and machine learning based models

油页岩 甲烷 吸附 等温过程 页岩气 梯度升压 人工神经网络 支持向量机 石油工程 地质学 计算机科学 环境科学 工艺工程 人工智能 化学 随机森林 热力学 工程类 古生物学 物理 有机化学
作者
Meng Meng,Ruizhi Zhong,Zhili Wei
出处
期刊:Fuel [Elsevier]
卷期号:278: 118358-118358 被引量:81
标识
DOI:10.1016/j.fuel.2020.118358
摘要

Shale gas contributes significantly to current global energy consumption, and an accurate estimation of geological gas-in-place (GIP) determines an optimal production plan. As the dominant form of storage, adsorbed gas in shale formation is of primary importance to be assessed. This paper summarizes adsorption models into traditional pressure/density dependent isothermal models, pressure and temperature unified model, and machine learning based models. Using a comprehensive experimental dataset, these models are applied to simulate shale gas adsorption under in-situ conditions. Results show that the modified Dubinin-Radushkevich (DR) model provides the optimal performance in traditional isothermal models. Pressure and temperature unified models make a breakthrough in isothermal conditions and can extrapolate the predictions beyond test ranges of temperature. Well-trained machine learning models not only break the limit of the isothermal condition and types of shale formation, but can also provide reasonable extrapolations beyond test ranges of temperature, total organic carbon (TOC), and moisture. Four popular machine learning algorithms are used, which include artificial neural network (ANN), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost). The XGBoost model is found to provide the best results for predicting shale gas adsorption, and it can be conveniently updated for broader applications with more available data. Overall, this paper demonstrates the capability of machine learning for prediction of shale gas adsorption, and the well-trained model can potentially be built into a large numerical frame to optimize production curves of shale gas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小橙子发布了新的文献求助10
刚刚
javalin完成签到,获得积分10
刚刚
LiShin发布了新的文献求助10
刚刚
刚刚
刚刚
叫滚滚发布了新的文献求助10
1秒前
坚强的樱发布了新的文献求助10
1秒前
桐桐应助zmmmm采纳,获得10
1秒前
3秒前
小敦发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
翔哥发布了新的文献求助10
4秒前
阿航完成签到,获得积分10
4秒前
情怀应助Mrrr采纳,获得10
5秒前
5秒前
调研昵称发布了新的文献求助10
6秒前
淡定念波完成签到,获得积分10
6秒前
6秒前
卷卷王发布了新的文献求助10
7秒前
7秒前
天天快乐应助phz采纳,获得10
8秒前
lili完成签到,获得积分10
9秒前
sakurai应助通~采纳,获得10
9秒前
9秒前
9秒前
柴火烧叽发布了新的文献求助10
10秒前
香蕉觅云应助内向秋寒采纳,获得10
10秒前
11秒前
11秒前
zyh完成签到,获得积分10
11秒前
11秒前
小马甲应助Anxinxin采纳,获得10
11秒前
ww发布了新的文献求助10
11秒前
这小猪真帅完成签到,获得积分10
12秒前
Hulda完成签到,获得积分10
12秒前
可靠访蕊完成签到 ,获得积分10
13秒前
深情安青应助科研小白采纳,获得10
13秒前
八八完成签到,获得积分20
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794