Prediction of methane adsorption in shale: Classical models and machine learning based models

油页岩 甲烷 吸附 等温过程 页岩气 梯度升压 人工神经网络 支持向量机 石油工程 地质学 计算机科学 环境科学 工艺工程 人工智能 化学 随机森林 热力学 工程类 古生物学 物理 有机化学
作者
Meng Meng,Ruizhi Zhong,Zhili Wei
出处
期刊:Fuel [Elsevier]
卷期号:278: 118358-118358 被引量:81
标识
DOI:10.1016/j.fuel.2020.118358
摘要

Shale gas contributes significantly to current global energy consumption, and an accurate estimation of geological gas-in-place (GIP) determines an optimal production plan. As the dominant form of storage, adsorbed gas in shale formation is of primary importance to be assessed. This paper summarizes adsorption models into traditional pressure/density dependent isothermal models, pressure and temperature unified model, and machine learning based models. Using a comprehensive experimental dataset, these models are applied to simulate shale gas adsorption under in-situ conditions. Results show that the modified Dubinin-Radushkevich (DR) model provides the optimal performance in traditional isothermal models. Pressure and temperature unified models make a breakthrough in isothermal conditions and can extrapolate the predictions beyond test ranges of temperature. Well-trained machine learning models not only break the limit of the isothermal condition and types of shale formation, but can also provide reasonable extrapolations beyond test ranges of temperature, total organic carbon (TOC), and moisture. Four popular machine learning algorithms are used, which include artificial neural network (ANN), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost). The XGBoost model is found to provide the best results for predicting shale gas adsorption, and it can be conveniently updated for broader applications with more available data. Overall, this paper demonstrates the capability of machine learning for prediction of shale gas adsorption, and the well-trained model can potentially be built into a large numerical frame to optimize production curves of shale gas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助123采纳,获得10
刚刚
刚刚
刚刚
1秒前
南宫书芹发布了新的文献求助10
1秒前
在水一方应助害羞含雁采纳,获得10
1秒前
2秒前
漂泊完成签到,获得积分10
2秒前
清爽的诗云完成签到,获得积分10
3秒前
3秒前
太阳雨完成签到,获得积分10
3秒前
cyf完成签到,获得积分10
3秒前
3秒前
黄学生完成签到 ,获得积分10
4秒前
asdfzxcv应助龘龘采纳,获得10
4秒前
4秒前
香蕉觅云应助平常的如风采纳,获得10
5秒前
太阳雨发布了新的文献求助10
6秒前
我想放假发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
沉默南露发布了新的文献求助10
8秒前
9秒前
9秒前
科研通AI6应助CCrain采纳,获得10
9秒前
10秒前
10秒前
Zllu完成签到,获得积分10
10秒前
野人小布完成签到,获得积分10
10秒前
旋风大普忒头战神完成签到 ,获得积分10
10秒前
Owen应助须尽欢采纳,获得10
11秒前
12秒前
做科研的小施同学完成签到,获得积分10
12秒前
12秒前
13秒前
飘逸的鸿煊完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
端庄一刀完成签到 ,获得积分10
14秒前
kingnb发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488