Prediction of methane adsorption in shale: Classical models and machine learning based models

油页岩 甲烷 吸附 等温过程 页岩气 梯度升压 人工神经网络 支持向量机 石油工程 地质学 计算机科学 环境科学 工艺工程 人工智能 化学 随机森林 热力学 工程类 古生物学 物理 有机化学
作者
Meng Meng,Ruizhi Zhong,Zhili Wei
出处
期刊:Fuel [Elsevier]
卷期号:278: 118358-118358 被引量:81
标识
DOI:10.1016/j.fuel.2020.118358
摘要

Shale gas contributes significantly to current global energy consumption, and an accurate estimation of geological gas-in-place (GIP) determines an optimal production plan. As the dominant form of storage, adsorbed gas in shale formation is of primary importance to be assessed. This paper summarizes adsorption models into traditional pressure/density dependent isothermal models, pressure and temperature unified model, and machine learning based models. Using a comprehensive experimental dataset, these models are applied to simulate shale gas adsorption under in-situ conditions. Results show that the modified Dubinin-Radushkevich (DR) model provides the optimal performance in traditional isothermal models. Pressure and temperature unified models make a breakthrough in isothermal conditions and can extrapolate the predictions beyond test ranges of temperature. Well-trained machine learning models not only break the limit of the isothermal condition and types of shale formation, but can also provide reasonable extrapolations beyond test ranges of temperature, total organic carbon (TOC), and moisture. Four popular machine learning algorithms are used, which include artificial neural network (ANN), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGBoost). The XGBoost model is found to provide the best results for predicting shale gas adsorption, and it can be conveniently updated for broader applications with more available data. Overall, this paper demonstrates the capability of machine learning for prediction of shale gas adsorption, and the well-trained model can potentially be built into a large numerical frame to optimize production curves of shale gas.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形傲霜完成签到 ,获得积分10
7秒前
ncwgx完成签到,获得积分10
9秒前
YuanLeiZhang完成签到,获得积分10
10秒前
科研通AI6应助Barry采纳,获得30
11秒前
12秒前
LY发布了新的文献求助10
12秒前
学术地雷发布了新的文献求助30
13秒前
香蕉觅云应助侯_采纳,获得10
13秒前
无极微光应助illuminate采纳,获得20
16秒前
17秒前
科研通AI6应助安静真采纳,获得10
17秒前
立冬发布了新的文献求助10
18秒前
或无情完成签到 ,获得积分10
21秒前
22秒前
zjq4302完成签到,获得积分10
23秒前
24秒前
随性发布了新的文献求助10
28秒前
zongzi12138完成签到,获得积分0
30秒前
kyle完成签到,获得积分10
31秒前
34秒前
ayayaya完成签到 ,获得积分10
36秒前
小蘑菇应助Jodie采纳,获得10
37秒前
wanci应助搞怪的鱼采纳,获得10
38秒前
鲤鱼依白完成签到 ,获得积分10
40秒前
标致夏真发布了新的文献求助30
41秒前
41秒前
彪壮的机器猫完成签到 ,获得积分10
42秒前
田様应助糟糕的铁锤采纳,获得10
42秒前
所所应助大气的懒羊羊采纳,获得10
45秒前
46秒前
标致夏真完成签到,获得积分10
51秒前
听话的代芙完成签到 ,获得积分10
55秒前
随性完成签到,获得积分10
55秒前
平淡菠萝完成签到,获得积分10
56秒前
56秒前
57秒前
59秒前
1分钟前
搞怪的鱼发布了新的文献求助10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560365
求助须知:如何正确求助?哪些是违规求助? 4645513
关于积分的说明 14675355
捐赠科研通 4586641
什么是DOI,文献DOI怎么找? 2516488
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951