已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Time-Series and Dynamic Cross-Correlations Analysis on Unexpected Information: Evidence from Media News and Online Postings

大众传媒 互联网 新闻媒体 计算机科学 互联网隐私 广告 万维网 业务
作者
Yan Li,Xiangyu Kong,Li Xiao,Zuochao Zhang
出处
期刊:Fluctuation and Noise Letters [World Scientific]
卷期号:19 (02): 2050011-2050011
标识
DOI:10.1142/s021947752050011x
摘要

In this paper, we investigate the relationship between unexpected information from postings and news, and the unexpected information is measured by the residual of regressions of trading volume on numbers of news or postings. We mainly find that (i) There are significant positive contemporaneous correlations between the unexpected information coming from postings and different kinds of news; the correlation between the unexpected information coming from postings and new media news is stronger than that between the unexpected information coming from postings and mass media news; (ii) The unexpected information coming from postings could cause the unexpected information coming from news, but only the unexpected information coming from the mass media news could cause that coming from postings; (iii) There are persistent power-law cross-correlations between the unexpected information coming from postings and that coming from mass media news and new media news. The cross-correlation between the unexpected information coming from postings and new media news is more persistent than the one between the unexpected information coming from postings and mass media news. The cross-correlations are all more stable in long term than in short term. We attribute our findings above to the dissemination speed of the information on the Internet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助吕薇采纳,获得10
1秒前
Robin发布了新的文献求助10
1秒前
1秒前
小蓝莓吃太胖完成签到 ,获得积分10
3秒前
张然完成签到,获得积分20
3秒前
科研通AI6应助孤独的静枫采纳,获得10
5秒前
6秒前
orixero应助简单采纳,获得10
6秒前
疯狂喵完成签到 ,获得积分10
8秒前
10秒前
11秒前
motopapi完成签到,获得积分20
15秒前
15秒前
滴滴答答完成签到,获得积分10
16秒前
jerry完成签到,获得积分10
18秒前
20秒前
20秒前
21秒前
22秒前
Orange应助方利俊采纳,获得10
24秒前
浮游应助Vicky采纳,获得10
25秒前
26秒前
zuoym发布了新的文献求助10
26秒前
Owen应助天真的小蜜蜂采纳,获得10
27秒前
27秒前
化学元素发布了新的文献求助10
27秒前
成就茗完成签到,获得积分10
28秒前
28秒前
简单发布了新的文献求助10
28秒前
乌拉拉啦啦啦完成签到 ,获得积分10
29秒前
海城好人完成签到,获得积分10
29秒前
Philip发布了新的文献求助30
31秒前
Mia完成签到,获得积分10
32秒前
Yat发布了新的文献求助10
33秒前
zuoym完成签到,获得积分10
33秒前
852应助Philip采纳,获得10
38秒前
Hello应助motopapi采纳,获得50
39秒前
风华正茂完成签到,获得积分10
40秒前
Robin完成签到,获得积分10
41秒前
44秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469866
求助须知:如何正确求助?哪些是违规求助? 4572859
关于积分的说明 14337422
捐赠科研通 4499774
什么是DOI,文献DOI怎么找? 2465272
邀请新用户注册赠送积分活动 1453726
关于科研通互助平台的介绍 1428259