Time-Series and Dynamic Cross-Correlations Analysis on Unexpected Information: Evidence from Media News and Online Postings

大众传媒 互联网 新闻媒体 计算机科学 互联网隐私 广告 万维网 业务
作者
Yan Li,Xiangyu Kong,Li Xiao,Zuochao Zhang
出处
期刊:Fluctuation and Noise Letters [World Scientific]
卷期号:19 (02): 2050011-2050011
标识
DOI:10.1142/s021947752050011x
摘要

In this paper, we investigate the relationship between unexpected information from postings and news, and the unexpected information is measured by the residual of regressions of trading volume on numbers of news or postings. We mainly find that (i) There are significant positive contemporaneous correlations between the unexpected information coming from postings and different kinds of news; the correlation between the unexpected information coming from postings and new media news is stronger than that between the unexpected information coming from postings and mass media news; (ii) The unexpected information coming from postings could cause the unexpected information coming from news, but only the unexpected information coming from the mass media news could cause that coming from postings; (iii) There are persistent power-law cross-correlations between the unexpected information coming from postings and that coming from mass media news and new media news. The cross-correlation between the unexpected information coming from postings and new media news is more persistent than the one between the unexpected information coming from postings and mass media news. The cross-correlations are all more stable in long term than in short term. We attribute our findings above to the dissemination speed of the information on the Internet.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hello应助wan采纳,获得10
刚刚
瑾蘆完成签到 ,获得积分10
1秒前
大力帽子应助CHEN采纳,获得10
1秒前
qiii发布了新的文献求助10
1秒前
大个应助smz采纳,获得10
1秒前
sbf发布了新的文献求助10
2秒前
卓卓卓卓关注了科研通微信公众号
2秒前
芝士椰果发布了新的文献求助30
3秒前
wrlwrl完成签到,获得积分10
3秒前
Fermion发布了新的文献求助10
3秒前
hearz完成签到,获得积分10
4秒前
小马甲应助小糊涂采纳,获得10
4秒前
feng完成签到 ,获得积分10
4秒前
霍笑白完成签到,获得积分10
4秒前
衡珩蘅完成签到,获得积分20
5秒前
7秒前
FashionBoy应助sbf采纳,获得10
7秒前
完美世界应助evelyn采纳,获得10
7秒前
鱼鱼色发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
搜集达人应助HH采纳,获得10
8秒前
9秒前
搜集达人应助lmr采纳,获得10
9秒前
完美世界应助罗柠七采纳,获得20
10秒前
阿强完成签到,获得积分10
10秒前
衡珩蘅发布了新的文献求助30
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
嘞是举仔应助hanyuchao采纳,获得50
12秒前
up关闭了up文献求助
12秒前
结实黑猫发布了新的文献求助10
12秒前
cmu1h完成签到,获得积分10
12秒前
李凯发布了新的文献求助10
12秒前
12秒前
13秒前
a.........发布了新的文献求助10
14秒前
美味又健康完成签到 ,获得积分10
14秒前
她说肚子是吃大的i完成签到,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233