Gas distribution mapping and source localization using a 3D grid of metal oxide semiconductor sensors

混合氧化物燃料 网格 计算机科学 色散(光学) 羽流 环境科学 实时计算 材料科学 气象学 地质学 物理 光学 大地测量学 冶金
作者
Javier Burgués,Victor Hernandez Bennetts,Achim J. Lilienthal,Santiago Marco
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:304: 127309-127309 被引量:34
标识
DOI:10.1016/j.snb.2019.127309
摘要

The difficulty to obtain ground truth (i.e. empirical evidence) about how a gas disperses in an environment is one of the major hurdles in the field of mobile robotic olfaction (MRO), impairing our ability to develop efficient gas source localization strategies and to validate gas distribution maps produced by autonomous mobile robots. Previous ground truth measurements of gas dispersion have been mostly based on expensive tracer optical methods or 2D chemical sensor grids deployed only at ground level. With the ever-increasing trend towards gas-sensitive aerial robots, 3D measurements of gas dispersion become necessary to characterize the environment these platforms can explore. This paper presents ten different experiments performed with a 3D grid of 27 metal oxide semiconductor (MOX) sensors to visualize the temporal evolution of gas distribution produced by an evaporating ethanol source placed at different locations in an office room, including variations in height, release rate and air flow. We also studied which features of the MOX sensor signals are optimal for predicting the source location, considering different lengths of the measurement window. We found strongly time-varying and counter-intuitive gas distribution patterns that disprove some assumptions commonly held in the MRO field, such as that heavy gases disperse along ground level. Correspondingly, ground-level gas distributions were rarely useful for localizing the gas source and elevated measurements were much more informative. We make the dataset and the code publicly available to enable the community to develop, validate, and compare new approaches related to gas sensing in complex environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助威武外套采纳,获得10
1秒前
isojso完成签到,获得积分10
1秒前
陈住气完成签到,获得积分10
1秒前
云云发布了新的文献求助10
2秒前
2秒前
笑点低的咖啡豆完成签到,获得积分10
3秒前
CipherSage应助坚定的剑心采纳,获得10
3秒前
Lucy完成签到,获得积分10
4秒前
共享精神应助BINGOFAN采纳,获得10
4秒前
虚心八宝粥应助鳗鱼三毒采纳,获得10
4秒前
4秒前
4秒前
5秒前
彭于晏应助科研废墟采纳,获得30
6秒前
伍盎完成签到,获得积分10
6秒前
7秒前
善学以致用应助橘涂采纳,获得10
8秒前
火星上的焦完成签到,获得积分20
9秒前
10秒前
lwj完成签到,获得积分10
10秒前
10秒前
10秒前
许甜甜发布了新的文献求助10
10秒前
byumi发布了新的文献求助10
10秒前
meng123完成签到,获得积分10
11秒前
科研通AI2S应助李咸咸123采纳,获得10
11秒前
爆米花应助曾经的孤萍采纳,获得30
13秒前
14秒前
洞洞拐完成签到,获得积分20
14秒前
香妃完成签到,获得积分10
14秒前
14秒前
15秒前
领导范儿应助科研雪瑞采纳,获得10
15秒前
Mr.zhou发布了新的文献求助10
15秒前
YY发布了新的文献求助10
16秒前
脑洞疼应助火星上的焦采纳,获得10
16秒前
16秒前
chay完成签到,获得积分10
16秒前
滴滴完成签到 ,获得积分20
17秒前
洞洞拐发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559631
求助须知:如何正确求助?哪些是违规求助? 3134188
关于积分的说明 9405683
捐赠科研通 2834230
什么是DOI,文献DOI怎么找? 1557904
邀请新用户注册赠送积分活动 727762
科研通“疑难数据库(出版商)”最低求助积分说明 716491