The impact of patient clinical information on automated skin cancer detection

杠杆(统计) 计算机科学 皮肤癌 人工智能 机器学习 癌症检测 癌症 深度学习 模式识别(心理学) 数据挖掘 医学 内科学
作者
André G. C. Pacheco,Renato A. Krohling
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:116: 103545-103545 被引量:156
标识
DOI:10.1016/j.compbiomed.2019.103545
摘要

Skin cancer is one of the most common types of cancer around the world. For this reason, over the past years, different approaches have been proposed to assist detect it. Nonetheless, most of them are based only on dermoscopy images and do not take into account the patient clinical information. In this work, first, we present a new dataset that contains clinical images, acquired from smartphones, and patient clinical information of the skin lesions. Next, we introduce a straightforward approach to combine the clinical data and the images using different well-known deep learning models. These models are applied to the presented dataset using only the images and combining them with the patient clinical information. We present a comprehensive study to show the impact of the clinical data on the final predictions. The results obtained by combining both sets of information show a general improvement of around 7% in the balanced accuracy for all models. In addition, the statistical test indicates significant differences between the models with and without considering both data. The improvement achieved shows the potential of using patient clinical information in skin cancer detection and indicates that this piece of information is important to leverage skin cancer detection systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu发布了新的文献求助10
刚刚
wintercyan完成签到,获得积分10
刚刚
2秒前
2秒前
妮儿发布了新的文献求助10
2秒前
2秒前
MADKAI发布了新的文献求助10
3秒前
insane完成签到,获得积分10
3秒前
云儿发布了新的文献求助20
3秒前
Jasper应助哲999采纳,获得10
3秒前
wanci应助拟拟采纳,获得10
4秒前
王超超完成签到,获得积分10
4秒前
4秒前
圈圈发布了新的文献求助10
5秒前
狼来了aas完成签到,获得积分10
5秒前
5秒前
大胆的莛发布了新的文献求助10
6秒前
文静的信封完成签到,获得积分10
6秒前
CipherSage应助wu采纳,获得10
6秒前
科目三应助震666采纳,获得30
6秒前
April发布了新的文献求助10
7秒前
加菲丰丰应助猫橘汽水采纳,获得30
7秒前
阳光海云完成签到,获得积分10
7秒前
8秒前
攒一口袋星星完成签到,获得积分10
8秒前
alwry完成签到,获得积分10
8秒前
eyebrow完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
小胖鱼完成签到,获得积分20
9秒前
Grayball应助啊这啥啊这是采纳,获得10
10秒前
cf完成签到,获得积分10
10秒前
王一线完成签到,获得积分10
11秒前
11秒前
11秒前
栗子完成签到,获得积分10
11秒前
bkagyin应助格格星采纳,获得10
12秒前
Youdge完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740