Genetic Programming for Instance Transfer Learning in Symbolic Regression

符号回归 遗传程序设计 计算机科学 机器学习 人工智能 过度拟合 学习迁移 加权 领域(数学分析) 理论(学习稳定性) 感应转移 支持向量机 回归 人工神经网络 数学 统计 机器人学习 医学 数学分析 移动机器人 机器人 放射科
作者
Qi Chen,Bing Xue,Mengjie Zhang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (1): 25-38 被引量:28
标识
DOI:10.1109/tcyb.2020.2969689
摘要

Transfer learning has attracted more attention in the machine-learning community recently. It aims to improve the learning performance on the domain of interest with the help of the knowledge acquired from a similar domain(s). However, there is only a limited number of research on tackling transfer learning in genetic programming for symbolic regression. This article attempts to fill this gap by proposing a new instance weighting framework for transfer learning in genetic programming-based symbolic regression. In the new framework, differential evolution is employed to search for optimal weights for source-domain instances, which helps genetic programming to identify more useful source-domain instances and learn from them. Meanwhile, a density estimation method is used to provide good starting points to help the search for the optimal weights while discarding some irrelevant or less important source-domain instances before learning regression models. The experimental results show that compared with genetic programming and support vector regression that learn only from the target instances, and learning from a mixture of instances from the source and target domains without any transfer learning component, the proposed method can evolve regression models which not only achieve notably better cross-domain generalization performance in stability but also reduce the trend of overfitting effectively. Meanwhile, these models are generally much simpler than those generated by the other GP methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研人才完成签到 ,获得积分10
刚刚
风清扬应助可爱的老司机采纳,获得30
1秒前
清新的苑博完成签到,获得积分10
1秒前
CYQ发布了新的文献求助10
1秒前
慕青应助嘻嘻采纳,获得10
2秒前
复杂的薯片完成签到,获得积分10
3秒前
CipherSage应助曹小妍采纳,获得10
3秒前
5秒前
Cisplatin发布了新的文献求助10
6秒前
Yin完成签到,获得积分10
7秒前
9秒前
充电宝应助belly采纳,获得10
9秒前
9秒前
9秒前
朱颜发布了新的文献求助10
10秒前
狗子哥完成签到,获得积分10
10秒前
Hello应助kenna123采纳,获得10
10秒前
11秒前
lll完成签到 ,获得积分10
11秒前
彭于晏应助王涛采纳,获得10
11秒前
13秒前
13秒前
13秒前
li完成签到 ,获得积分10
14秒前
14秒前
优美从菡发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
睿O宝宝O完成签到 ,获得积分10
17秒前
耳喃完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
19秒前
20秒前
20秒前
耳喃发布了新的文献求助10
21秒前
hd发布了新的文献求助10
21秒前
彭于晏应助琦琦采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458527
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295592
捐赠科研通 4489446
什么是DOI,文献DOI怎么找? 2459080
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424474