Resilience centrality in complex networks

中心性 弹性(材料科学) 复杂网络 计算机科学 地理 数学 物理 万维网 组合数学 热力学
作者
Yongtao Zhang,Cunqi Shao,Shibo He,Jianxi Gao
出处
期刊:Physical review [American Physical Society]
卷期号:101 (2) 被引量:28
标识
DOI:10.1103/physreve.101.022304
摘要

Resilience describes a system's ability to adjust its activity to retain the basic functionality when errors or failures occur in components (nodes) of the network. Due to the complexity of a system's structure, different components in the system exhibit diversity in the ability to affect the resilience of the system, bringing us a great challenge to protect the system from collapse. A fundamental problem is therefore to propose a physically insightful centrality index, with which to quantify the resilience contribution of a node in any systems effectively. However, existing centrality indexes are not suitable for the problem because they only consider the network structure of the system and ignore the impact of underlying dynamic characteristics. To break the limits, we derive a new centrality index: resilience centrality from the 1D dynamic equation of systems, with which we can quantify the ability of nodes to affect the resilience of the system accurately. Resilience centrality unveils the long-sought relations between the ability of nodes in a system's resilience and network structure of the system: the capacity is mainly determined by the degree and weighted nearest-neighbor degree of the node, in which weighted nearest-neighbor degree plays a prominent role. Further, we demonstrate that weighted nearest-neighbor degree has a positive impact on resilience centrality, while the effect of the degree depends on a specific parameter, average weighted degree β_{eff}, in the 1D dynamic equation. To test the performance of our approach, we construct four real networks from data, which corresponds to two complex systems with entirely different dynamic characteristics. The simulation results demonstrate the effectiveness of our resilience centrality, providing us theoretical insights into the protection of complex systems from collapse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
lululu完成签到,获得积分10
1秒前
小马甲应助111采纳,获得10
2秒前
MORNING发布了新的文献求助10
2秒前
苯巴比妥不妥完成签到,获得积分10
2秒前
天天发布了新的文献求助10
2秒前
chen完成签到 ,获得积分10
3秒前
李策发布了新的文献求助10
4秒前
4秒前
Gengen完成签到 ,获得积分10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
orixero应助GBRUCE采纳,获得30
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
coolkid应助科研通管家采纳,获得10
5秒前
SYLH应助科研通管家采纳,获得10
5秒前
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
coolkid应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
chenshi0515发布了新的文献求助20
6秒前
星瑗发布了新的文献求助10
6秒前
7秒前
张流筝完成签到 ,获得积分10
7秒前
大佬来教我完成签到,获得积分10
7秒前
7秒前
SciGPT应助快乐保温杯采纳,获得10
8秒前
nnn发布了新的文献求助10
9秒前
sakuraking发布了新的文献求助10
10秒前
noNONOno完成签到,获得积分20
10秒前
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951758
求助须知:如何正确求助?哪些是违规求助? 3497124
关于积分的说明 11086059
捐赠科研通 3227597
什么是DOI,文献DOI怎么找? 1784497
邀请新用户注册赠送积分活动 868586
科研通“疑难数据库(出版商)”最低求助积分说明 801154