Resilience centrality in complex networks

中心性 弹性(材料科学) 复杂网络 计算机科学 地理 数学 物理 万维网 组合数学 热力学
作者
Yongtao Zhang,Cunqi Shao,Shibo He,Jianxi Gao
出处
期刊:Physical review 卷期号:101 (2) 被引量:28
标识
DOI:10.1103/physreve.101.022304
摘要

Resilience describes a system's ability to adjust its activity to retain the basic functionality when errors or failures occur in components (nodes) of the network. Due to the complexity of a system's structure, different components in the system exhibit diversity in the ability to affect the resilience of the system, bringing us a great challenge to protect the system from collapse. A fundamental problem is therefore to propose a physically insightful centrality index, with which to quantify the resilience contribution of a node in any systems effectively. However, existing centrality indexes are not suitable for the problem because they only consider the network structure of the system and ignore the impact of underlying dynamic characteristics. To break the limits, we derive a new centrality index: resilience centrality from the 1D dynamic equation of systems, with which we can quantify the ability of nodes to affect the resilience of the system accurately. Resilience centrality unveils the long-sought relations between the ability of nodes in a system's resilience and network structure of the system: the capacity is mainly determined by the degree and weighted nearest-neighbor degree of the node, in which weighted nearest-neighbor degree plays a prominent role. Further, we demonstrate that weighted nearest-neighbor degree has a positive impact on resilience centrality, while the effect of the degree depends on a specific parameter, average weighted degree β_{eff}, in the 1D dynamic equation. To test the performance of our approach, we construct four real networks from data, which corresponds to two complex systems with entirely different dynamic characteristics. The simulation results demonstrate the effectiveness of our resilience centrality, providing us theoretical insights into the protection of complex systems from collapse.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
星辰大海应助酸奶泡泡采纳,获得10
2秒前
2秒前
guozizi应助翻斗花园牛爷爷采纳,获得30
2秒前
深情安青应助controln采纳,获得10
2秒前
3秒前
是饼干吧完成签到 ,获得积分10
4秒前
烟岚花发布了新的文献求助30
5秒前
雪人不怕火完成签到 ,获得积分10
6秒前
英姑应助霜降采纳,获得10
6秒前
6秒前
渊山发布了新的文献求助10
7秒前
是饼干吧关注了科研通微信公众号
9秒前
9秒前
10秒前
漠之梦发布了新的文献求助10
10秒前
小蘑菇应助渊山采纳,获得10
11秒前
烟岚花完成签到,获得积分20
12秒前
Lijia_YAO发布了新的文献求助10
12秒前
小柴胡发布了新的文献求助10
12秒前
ylyla发布了新的文献求助10
13秒前
LYJ完成签到,获得积分20
14秒前
15秒前
Tomice完成签到,获得积分10
17秒前
亥月十八完成签到,获得积分10
18秒前
研友_VZG7GZ应助霜降采纳,获得10
18秒前
18秒前
机智的书竹完成签到,获得积分10
18秒前
杜杜发布了新的文献求助10
19秒前
Tomice发布了新的文献求助10
19秒前
小柴胡完成签到,获得积分10
20秒前
22秒前
24秒前
hhhh完成签到 ,获得积分10
24秒前
细心秀发完成签到,获得积分10
26秒前
DcQiu科研小白完成签到,获得积分10
29秒前
30秒前
atlas wu发布了新的文献求助10
30秒前
寻道图强应助rorrons采纳,获得30
31秒前
高分求助中
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346174
求助须知:如何正确求助?哪些是违规求助? 2972939
关于积分的说明 8657179
捐赠科研通 2653379
什么是DOI,文献DOI怎么找? 1453124
科研通“疑难数据库(出版商)”最低求助积分说明 672752
邀请新用户注册赠送积分活动 662614